A major challenge of modern human biology is to understand how a differentiated somatic cell integrates the response to external signals in the complex context of basic metabolic and tissue-specific gene expression programs. This requires exploring two interconnected basic processes: the signaling network and the global function of the key transcription factors on which signaling acts to modulate gene expression. An apparently simple model to study these questions has been steroid hormones action, since their intracellular receptors both initiate signaling and are the key transcription factors orchestrating the cellular response. We have used progesterone action in breast cancer cells to elucidate the intricacies of progesterone receptor (PR) signaling crosstalk with protein kinases, histone modifying enzymes and ATP-dependent chromatin remodeling complexes. ( 1) Recently we have described the cistrome of PR in these cells at different times after addition of hormone and its relationship to chromatin structure. ( 2) The role of chromatin in transcription factor binding to the genome is still debated, but the dominant view is that factors bind preferentially to nucleosome-depleted regions, usually identified as DNaseI-hypersensitive sites (DHS). In contrast with this vision, we have shown that PR requires nucleosomes for optimal binding and function. In breast cancer cells treated with progestins we identified 25,000 PR binding sites (PRbs), the majority encompassing several copies of the hexanucleotide TGTYCY, highly abundant in the genome. We found that strong functional PRbs accumulate around progesterone-induced genes mainly in enhancers, are enriched in DHS but exhibit high nucleosome occupancy. Progestin stimulation results in remodeling of these nucleosomes with displacement of histones H1 and H2A/H2B dimers. Our results strongly suggest that nucleosomes play crucial role in PR binding and hormonal gene regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720749 | PMC |
http://dx.doi.org/10.4161/nucl.25108 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Science and Technology Austria, AT-3400 Klosterneuburg, Austria.
Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.
Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.
Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!