HLA-DO (H2-O in mice) is an intracellular non-classical MHC class II molecule (MHCII). It forms a stable complex with HLA-DM (H2-M in mice) and shapes the MHC class II-associated peptide repertoire. Here, we tested the impact of HLA-DO and H2-O on the binding of superantigens (SAgs), which has been shown previously to be sensitive to the structural nature of the class II-bound peptides. We found that the binding of staphylococcal enterotoxin (SE) A and B, as well as toxic shock syndrome toxin 1 (TSST-1), was similar on the HLA-DO(+) human B cell lines 721.45 and its HLA-DO(-) counterpart. However, overexpressing HLA-DO in MHC class II(+) HeLa cells (HeLa-CIITA-DO) improved binding of SEA and TSST-1. Accordingly, knocking down HLA-DO expression using specific siRNAs decreased SEA and TSST-1 binding. We tested directly the impact of the class II-associated invariant chain peptide (CLIP), which dissociation from MHC class II molecules is inhibited by overexpressed HLA-DO. Loading of synthetic CLIP on HLA-DR(+) cells increased SEA and TSST-1 binding. Accordingly, knocking down HLA-DM had a similar effect. In mice, H2-O deficiency had no impact on SAgs binding to isolated splenocytes. Altogether, our results demonstrate that the sensitivity of SAgs to the MHCII-associated peptide has physiological basis and that the effect of HLA-DO on SEA and TSST-1 is mediated through the inhibition of CLIP release.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.humimm.2013.05.010DOI Listing

Publication Analysis

Top Keywords

mhc class
16
sea tsst-1
16
class ii-associated
12
ii-associated invariant
8
invariant chain
8
hla-do h2-o
8
tsst-1 binding
8
hla-do
7
binding
7
class
7

Similar Publications

Tumor-specific HLA class I expression is required for cytotoxic T-cell elimination of cancer cells expressing tumor-associated or neo-antigens. Cancers downregulate antigen presentation to avoid adaptive immunity. The highly polymorphic nature of the genes encoding these proteins, coupled with quaternary-structure changes after formalin fixation, complicate detection by immunohistochemistry.

View Article and Find Full Text PDF

Potentiating the effect of immunotherapy in pancreatic cancer using gas-entrapping materials.

Biomaterials

January 2025

Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA; Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA. Electronic address:

Immune checkpoint inhibitors (ICIs) show limited success in treating pancreatic ductal adenocarcinoma (PDAC), largely due to immune evasion mechanisms, including downregulating expression of major histocompatibility complex class I (MHC-I). Our retrospective analysis demonstrated that smoking - a state of elevated CO exposure - is correlated with increased MHC I expression in pancreatic tumors. Here we tested our hypothesis that introducing exogenous CO augments the anti-cancer effects of immunotherapy.

View Article and Find Full Text PDF

The discovery of tumor-derived neoantigens which elicit an immune response through major histocompatibility complex (MHC-I/II) binding has led to significant advancements in immunotherapy. While many neoantigens have been discovered through the identification of non-synonymous mutations, the rate of these is low in some cancers, including head and neck squamous cell carcinoma. Therefore, the identification of neoantigens through additional means, such as aberrant splicing, is necessary.

View Article and Find Full Text PDF

The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.

View Article and Find Full Text PDF

Background: Microsatellite instability-high (MSI-H) metastatic colorectal cancer (CRC) patients are the dominant population in immune checkpoint blockade treatments, while more than half of them could not benefit from single-agent immunotherapy. We tried to identify the biomarker of MSI-H CRC and explore its role and mechanism in anti-PD-1 treatments. Tumor-specific MHC-II was linked to a better response to anti-PD-1 in MSI-H CRC and CD74 promoted assembly and transport of HLA-DR dimers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!