The reaction of NCN with H atoms has been investigated by ab initio MO and RRKM theory calculations. The mechanisms for formation of major products on the doublet and quartet potential energy surfaces have been predicted at the CCSD(T) level of theory with the complete basis set limit. In addition, the heat of formation for NCN predicted at this rigorous level and those from five isogyric reactions are in close agreement with the best value based on the isodesmic process, (3)CCO + N2 = (3)NCN + CO, 109.4 kcal/mol, which lies within the two existing experimental values. The rate constants for the three possible reaction channels, H + NCN → CH + N2 (k(P1)), HCN + (4)N (k(QP1)), and HNC + (4)N (k(QP2)), have been calculated in the temperature range 298-3000 K. The results show that k(P1) is significantly higher than k(QP1) and k(QP2) and that the total rate constant agrees well with available experimental values in the whole temperature range studied. The kinetics of the reverse CH + N2 reaction has also been revisited at the CCSD(T)/CBS level; the predicted total rate constants at 760 Torr Ar pressure can be represented by kr = 4.01 × 10(-15) T(0.90) exp(-17.42 kcal mol(-1)/RT) cm(3) molecule(-1) s(-1) at T = 800-4000 K. The result agrees closely with the most recent experimental data and the best theoretical result of Harding et al. (J. Phys. Chem. A 2008, 112, 522) as well as that of Moskaleva and Lin (Proc. Combust. Inst. 2000, 28, 2393) evaluated with a steady-state approximation after a coding error correction made in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp402903tDOI Listing

Publication Analysis

Top Keywords

heat formation
8
doublet quartet
8
experimental values
8
rate constants
8
temperature range
8
total rate
8
ncn
5
initio chemical
4
chemical kinetics
4
kinetics ncn
4

Similar Publications

Huddling behaviour is present in many animal species. This behaviour involves maintaining close physical contact with conspecifics to minimise heat loss and, in general, reduce energy expenditure. Additionally, this behaviour also facilitates complex social interactions within a population.

View Article and Find Full Text PDF

Meagre () is one of the fast-growing species considered for sustainable aquaculture development along the Mediterranean and Eastern Atlantic coasts. The emergence of Systemic Granulomatosis (SG), a disease marked by multiple granulomas in various tissues, poses a significant challenge in meagre aquaculture. In the current study, we investigate the association of spp.

View Article and Find Full Text PDF

Background/objectives: Catha edulis, commonly known as khat, is used for its psychoactive effects and is considered a natural amphetamine. The current study investigated the metabolomic profile in the cerebellum of mice after repeated exposure to khat and evaluated the effects of clavulanic acid on the metabolomic profile in the cerebellum in khat-treated mice.

Methods: Male C67BL/6 mice that were 6-9 weeks old were recruited and divided into three groups: the control group was treated with 0.

View Article and Find Full Text PDF

Exogenous Trehalose Assists in Resisting High-Temperature Stress Mainly by Activating Genes Rather than Entering Metabolism.

J Fungi (Basel)

December 2024

Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.

is a typical aroma-producing yeast in food brewing, but it has low heat resistance and poor proliferation ability at high temperature. Trehalose is generally considered to be a protective agent that helps stable yeast cells resist heat shock stress, but its functional mechanism for yeast cells in the adaptation period under heat stress is unclear. In this study, the physiological metabolism changes, specific gene transcription expression characteristics, and transcriptome differences of under different carbon sources under high-temperature stress (40 °C) were compared to explore the mechanism of trehalose inducing to recover and proliferate under high-temperature stress during the adaptation period.

View Article and Find Full Text PDF

The study aimed to prepare complex gels of sonicated quinoa protein (QP) and polysaccharides, comparing the effects of different protein components and pH on gel properties. FTIR analysis demonstrated that the β-structure in protein at pH 7.0 was enhanced by ultrasonic treatment, which could promote the formation of a gel network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!