Asymmetric angular dependence of domain wall motion in magnetic nanowires.

J Nanosci Nanotechnol

Department of Physics, Hannam University, Daejeon 306-791, Korea.

Published: March 2013

An angular dependence of domain wall (DW) motion is studied in a magnetic wire consisting of a giant-magnetoresistance spin-valve. A DW pinning site is formed by a single notch, where a conventional linear one and a specially designed tilted one are compared. The asymmetric angular dependence was found in the DW depinning behavior with the tilted notch. The geometry control of the pinning site can be useful for DW diode devices using a rotating magnetic field.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2013.6985DOI Listing

Publication Analysis

Top Keywords

angular dependence
12
asymmetric angular
8
dependence domain
8
domain wall
8
wall motion
8
pinning site
8
motion magnetic
4
magnetic nanowires
4
nanowires angular
4
motion studied
4

Similar Publications

We present an algorithm that combines quantum scattering calculations with probabilistic machine-learning models to predict quantum dynamics rate coefficients for a large number of state-to-state transitions in molecule-molecule collisions much faster than with direct solutions of the Schrödinger equation. By utilizing the predictive power of Gaussian process regression with kernels, optimized to make accurate predictions outside of the input parameter space, the present strategy reduces the computational cost by about 75%, with an accuracy within 5%. Our method uses temperature dependences of rate coefficients for transitions from the isolated states of initial rotational angular momentum j, determined via explicit calculations, to predict the temperature dependences of rate coefficients for other values of j.

View Article and Find Full Text PDF

The practical implementation of terahertz (THz) imaging and spectroscopic systems in real operational conditions requires them to be of a compact size, to have enhanced functionality, and to be user-friendly. This work demonstrates the single-sided integration of Fresnel-zone-plate-based optical elements with InGaAs bow-tie diodes directly on a semiconductor chip. Numerical simulations were conducted to optimize the Fresnel zone plate's focal length and the InP substrate's thickness to achieve constructive interference at 600 GHz, room-temperature operation and achieve a sensitivity more than an order of magnitude higher-up to 24.

View Article and Find Full Text PDF

Impaired insight into illness occurs in up to 98% of patients with schizophrenia, depending on the stage of illness, and leads to negative clinical outcomes. Previous neuroimaging studies suggest that impaired insight in patients with schizophrenia may be related to structural and functional anomalies in frontoparietal brain regions. To date, limited studies have investigated the association between regional cerebral blood flow (CBF) and impaired insight in schizophrenia.

View Article and Find Full Text PDF

Background: Quantitative evidence of levodopa-induced beneficial effects on parkinsonian rigidity in Parkinson's disease (PD) is lacking. Recent research has demonstrated the velocity-dependent nature of objective rigidity in PD and revealed its neural underpinning.

Objective: The present study aimed to examine the effect of levodopa on objective rigidity in PD.

View Article and Find Full Text PDF

Researchers conducted this observational study on sixty young females to detect the effect of the early follicular phase of the menstrual cycle on hip muscle performance. The Biodex Isokinetic dynamometer 4 pro was used. The authors used a dependent t-test and detected a statistically significant increase in the mean values of all hip flexion and extension isokinetic parameters at angular velocities 90°/sec and 180°/sec ( < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!