1. Hexosaminidase C has been purified from human placenta. Complete separation from hexosaminidases A and B was achieved. 2. The following properties of hexosaminidase C differ from those of the A and B isozymes. Presence in the supernatant rather than the lysosomes, neutral pH optimum, higher molecular weight, lack of activity on beta-N-acetylgalactosamine derivatives, and lack of immunological relationship. 3. Hexosaminidase C is active in patients deficient in hexosaminidases A and B and can be recognized by its characteristic electrophoretic mobility. It is concluded that the genetic origin of hexosaminidase C is probably different from that of hexosaminidases A and B.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0005-2744(75)90162-x | DOI Listing |
J Neurochem
January 2025
Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA) has been considered as a strategy to decrease tau and amyloid-beta phosphorylation, aggregation, and pathology in Alzheimer's disease (AD). There is still more to be learned about the impact of enhancing global protein O-GlcNAcylation, which is important for understanding the potential of using OGA inhibition to treat neurodegenerative diseases. In this study, we investigated the acute effect of pharmacologically increasing O-GlcNAc levels, using the OGA inhibitor Thiamet G (TG), in normal mouse brains.
View Article and Find Full Text PDFNeurol Genet
December 2024
From the School of Medicine (A.R.T., J.R.), The University of Queensland; Department of Neurology (W.R., P.A.M., R.D.H., L.V.), Royal Brisbane & Women's Hospital; The University of Queensland (P.A.M., R.D.H., L.V.), UQ Centre for Clinical Research; and Genetic Health Queensland (J.R.), Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia.
Tay-Sachs disease is a neurodegenerative disorder characterized by progressive neurologic impairment due to pathogenic variants in the gene that codes for the alpha subunit of β-hexosaminidase. We report 2 cases of adult-onset progressive weakness, ataxia, and neuropsychiatric symptoms in a 30-year-old man and 37-year-old woman. Both patients had compound heterozygosity in the gene with 4 distinct variants.
View Article and Find Full Text PDFGM2 gangliosidosis is lysosomal storage disorder caused by deficiency of the heterodimeric enzyme β-hexosaminidase A. Tay-Sachs disease is caused by variants in encoding the α-subunit and Sandhoff disease is caused by variants in encoding the β-subunit. Due to shared clinical and biochemical findings, the two have been considered indistinguishable.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan.
YKL-40 is structurally similar to chitotriosidase (CHIT1), an active chitinase, but it lacks chitin-degrading activity while retaining chitin-binding capability. Elevated YKL-40 levels are associated with inflammatory diseases and cancers, making it a valuable biomarker. We previously reported that the W69T substitution in YKL-40 significantly reduces its chitin-binding affinity, identifying W69 as a crucial binding site.
View Article and Find Full Text PDFCells
January 2025
Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
Sandhoff disease (SD) is a progressive neurodegenerative lysosomal storage disorder characterized by GM2 ganglioside accumulation as a result of mutations in the gene, which encodes the β-subunit of the enzyme β-hexosaminidase. Lysosomal storage of GM2 triggers inflammation in the CNS and periphery. The NLRP3 inflammasome is an important coordinator of pro-inflammatory responses, and we have investigated its regulation in murine SD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!