AI Article Synopsis

  • Bats display significant ecological diversity, making them ideal for studying adaptation to different environments.
  • Researchers examined if behavioral flexibility and learning performance in bats relate to their foraging ecology, predicting that bats in complex environments would learn faster and be more adaptable.
  • The study of three Myotis bat species revealed that while all learned simple tasks quickly, one species showed slower complex learning and less flexibility, supporting the idea that cognitive abilities are linked to ecological demands.

Article Abstract

Bats are unusual among mammals in showing great ecological diversity even among closely related species and are thus well suited for studies of adaptation to the ecological background. Here we investigate whether behavioral flexibility and simple- and complex-rule learning performance can be predicted by foraging ecology. We predict faster learning and higher flexibility in animals hunting in more complex, variable environments than in animals hunting in more simple, stable environments. To test this hypothesis, we studied three closely related insectivorous European bat species of the genus Myotis that belong to three different functional groups based on foraging habitats: M. capaccinii, an open water forager, M. myotis, a passive listening gleaner, and M. emarginatus, a clutter specialist. We predicted that M. capaccinii would show the least flexibility and slowest learning reflecting its relatively unstructured foraging habitat and the stereotypy of its natural foraging behavior, while the other two species would show greater flexibility and more rapid learning reflecting the complexity of their natural foraging tasks. We used a purposefully unnatural and thus species-fair crawling maze to test simple- and complex-rule learning, flexibility and re-learning performance. We found that M. capaccinii learned a simple rule as fast as the other species, but was slower in complex rule learning and was less flexible in response to changes in reward location. We found no differences in re-learning ability among species. Our results corroborate the hypothesis that animals' cognitive skills reflect the demands of their ecological niche.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673959PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064823PLOS

Publication Analysis

Top Keywords

foraging ecology
8
learning performance
8
simple- complex-rule
8
complex-rule learning
8
animals hunting
8
learning reflecting
8
natural foraging
8
learning
7
foraging
6
species
5

Similar Publications

Electric transportation and electroreception in hummingbird flower mites.

Proc Natl Acad Sci U S A

February 2025

School of Biological Sciences, Life Sciences Department, University of Bristol, Bristol BS8 1TQ, England.

Electric fields in terrestrial environments are used by caterpillars to detect their predators, as foraging cues by pollinators, and facilitate ballooning by spiders. This study shows that electric fields facilitate transportation and detection of hummingbirds in a guild of tropical phoretic mites. Hummingbird flower mites feed on nectar and pollen and complete their life cycle inside flowers.

View Article and Find Full Text PDF

Combining radio-telemetry and radar measurements to test optimal foraging in an aerial insectivore bird.

Elife

January 2025

Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Haifa, Israel.

Optimal foraging theory posits that foragers adjust their movements based on prey abundance to optimize food intake. While extensively studied in terrestrial and marine environments, aerial foraging has remained relatively unexplored due to technological limitations. This study, uniquely combining BirdScan-MR1 radar and the Advanced Tracking and Localization of Animals in Real-Life Systems biotelemetry system, investigates the foraging dynamics of Little Swifts () in response to insect movements over Israel's Hula Valley.

View Article and Find Full Text PDF

Combined Transcriptomics and Metabolomics Uncover the Potential Mechanism of Plant Growth-Promoting Rhizobacteria on the Regrowth of After Mowing.

Int J Mol Sci

January 2025

Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot 010010, China.

Mowing significantly influences nutrient cycling and stimulates metabolic adjustments in plants to promote regrowth. Plant growth-promoting rhizobacteria (PGPR) are crucial for enhancing plant growth, nutrient absorption, and stress resilience; however, whether inoculation with PGPR after mowing can enhance plant regrowth capacity further, as well as its specific regulatory mechanisms, remains unexplored. In this study, PGPR (B13) was inoculated into mowed to evaluate its effects on phenotypic traits, root nutrient contents, and hormone levels during the regrowth process and to further explore its role in the regrowth of after mowing.

View Article and Find Full Text PDF

Understanding how land use affects temporal stability is crucial to preserve biodiversity and ecosystem functions. Yet, the mechanistic links between land-use intensity and stability-driving mechanisms remain unclear, with functional traits likely playing a key role. Using 13 years of data from 300 sites in Germany, we tested whether and how trait-based community features mediate the effect of land-use intensity on acknowledged stability drivers (compensatory dynamics, portfolio effect, and dominant species variability), within and across plant and arthropod communities.

View Article and Find Full Text PDF

Pollinators help maintain functional landscapes and are sensitive to floral nutritional quality. Both proteins and lipids influence pollinator foraging, but the role of individual biochemical components in pollen remains unclear. We conducted an experiment comprising common garden plots of six plant species (Asteraceae, Rosaceae, Onagraceae, Boraginaceae, and Plantaginaceae).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!