The purpose of the present study is to explore the progression of type 1 diabetes (T1D) in Danish children 12 months after diagnosis using Latent Factor Modelling. We include three data blocks of dynamic paraclinical biomarkers, baseline clinical characteristics and genetic profiles of diabetes related SNPs in the analyses. This method identified a model explaining 21.6% of the total variation in the data set. The model consists of two components: (1) A pattern of declining residual β-cell function positively associated with young age, presence of diabetic ketoacidosis and long duration of disease symptoms (P = 0.0004), and with risk alleles of WFS1, CDKN2A/2B and RNLS (P = 0.006). (2) A second pattern of high ZnT8 autoantibody levels and low postprandial glucagon levels associated with risk alleles of IFIH1, TCF2, TAF5L, IL2RA and PTPN2 and protective alleles of ERBB3 gene (P = 0.0005). These results demonstrate that Latent Factor Modelling can identify associating patterns in clinical prospective data--future functional studies will be needed to clarify the relevance of these patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674006PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064632PLOS

Publication Analysis

Top Keywords

residual β-cell
8
β-cell function
8
type diabetes
8
latent factor
8
factor modelling
8
risk alleles
8
complex multi-block
4
multi-block analysis
4
analysis identifies
4
identifies immunologic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!