Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Recently, Cipriani and colleagues examined the relative efficacy of 12 new-generation antidepressants on major depression using network meta-analytic methods. They found that some of these medications outperformed others in patient response to treatment. However, several methodological criticisms have been raised about network meta-analysis and Cipriani's analysis in particular which creates the concern that the stated superiority of some antidepressants relative to others may be unwarranted.
Materials And Methods: A Monte Carlo simulation was conducted which involved replicating Cipriani's network meta-analysis under the null hypothesis (i.e., no true differences between antidepressants). The following simulation strategy was implemented: (1) 1000 simulations were generated under the null hypothesis (i.e., under the assumption that there were no differences among the 12 antidepressants), (2) each of the 1000 simulations were network meta-analyzed, and (3) the total number of false positive results from the network meta-analyses were calculated.
Findings: Greater than 7 times out of 10, the network meta-analysis resulted in one or more comparisons that indicated the superiority of at least one antidepressant when no such true differences among them existed.
Interpretation: Based on our simulation study, the results indicated that under identical conditions to those of the 117 RCTs with 236 treatment arms contained in Cipriani et al.'s meta-analysis, one or more false claims about the relative efficacy of antidepressants will be made over 70% of the time. As others have shown as well, there is little evidence in these trials that any antidepressant is more effective than another. The tendency of network meta-analyses to generate false positive results should be considered when conducting multiple comparison analyses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670872 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0063509 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!