The antibiotic resistance "mobilome": searching for the link between environment and clinic.

Front Microbiol

M. G. DeGroote Institute for Infectious Disease Research, McMaster University Hamilton, ON, Canada ; Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton, ON, Canada.

Published: June 2013

Antibiotic resistance is an ancient problem, owing to the co-evolution of antibiotic-producing and target organisms in the soil and other environments over millennia. The environmental "resistome" is the collection of all genes that directly or indirectly contribute to antibiotic resistance. Many of these resistance determinants originate in antibiotic-producing organisms (where they serve to mediate self-immunity), while others become resistance determinants only when mobilized and over-expressed in non-native hosts (like plasmid-encoded β-lactamases). The modern environmental resistome is under selective pressure from human activities such as agriculture, which may influence the composition of the local resistome and lead to gene transfer events. Beyond the environment, we are challenged in the clinic by the rise in both frequency and diversity of antibiotic resistant pathogens. We assume that clinical resistance originated in the environment, but few examples of direct gene exchange between the environmental resistome and the clinical resistome have been documented. Strong evidence exists to suggest that clinical aminoglycoside and vancomycin resistance enzymes, the extended-spectrum β-lactamase CTX-M and the quinolone resistance gene qnr have direct links to the environmental resistome. In this review, we highlight recent advances in our understanding of horizontal gene transfer of antibiotic resistance genes from the environment to the clinic. Improvements in sequencing technologies coupled with functional metagenomic studies have revealed previously underappreciated diversity in the environmental resistome, and also established novel genetic links to the clinic. Understanding mechanisms of gene exchange becomes vital in controlling the future dissemination of antibiotic resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667243PMC
http://dx.doi.org/10.3389/fmicb.2013.00138DOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
20
environmental resistome
16
resistance
9
environment clinic
8
resistance determinants
8
gene transfer
8
gene exchange
8
antibiotic
6
resistome
6
environmental
5

Similar Publications

Maturation inhibitors (MIs) block HIV-1 maturation by preventing the cleavage of the capsid protein and spacer peptide 1 (CA-SP1). Bevirimat (BVM), a first-in-class MI, displayed sub-optimal efficacy in clinical trials due to presence of SP1:V7A polymorphism in the Gag protein.This polymorphism is inherently present in HIV-1 subtype C and conferred resistance to BVM.

View Article and Find Full Text PDF

Background: Carbapenem-resistant Gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA) are among WHO's priority pathogens with antimicrobial resistance (AMR). Studies suggest potential impacts of the COVID-19-pandemic on AMR. We described changes in AMR incidence and epidemiology in Germany during the COVID-19-pandemic.

View Article and Find Full Text PDF

Staphylococcaceae are a diverse bacterial family with important implications for human and animal health. This study highlights the One Health relevance of their environmental dispersal, particularly, by identifying closely related or genetically identical strains circulating between farm and community environments. Environmental Staphylococcaceae strains were isolated from animal farms and interconnected areas within a university setting, both influenced by anthropogenic activities.

View Article and Find Full Text PDF

Epidemiology, mechanisms, and clinical impact of bacterial heteroresistance.

NPJ Antimicrob Resist

January 2025

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Rescarch Center for Infectious Diseases, China-Singapore Belt and Road Joint Laboratory on Infection Research and Drug Development, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.

Bacterial heteroresistance, a phenomenon where subpopulations within a bacterial strain exhibit significantly reduced antibiotic susceptibility compared to the main population, poses a major challenge in managing infectious diseases. It is considered an intermediate stage in the evolution of bacteria towards full resistance. Heteroresistant strains often have a minimal inhibitory concentration (MIC) that appears sensitive, making detection and differentiation in clinical settings difficult.

View Article and Find Full Text PDF

Epidemiology of invasive Haemophilus influenzae infections in Belgium: 2018-2022.

Eur J Clin Microbiol Infect Dis

January 2025

National reference centre for Haemophilus influenzae, Department of microbiology, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Université libre de Bruxelles, Brussels, Belgium.

Introduction: Haemophilus influenzae plays a major role in invasive bacterial infections. Resistant strains are emerging, prompting the WHO to include H. influenzae on its list of priority pathogens for research and development of new antibiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!