Antibiotic resistance is an ancient problem, owing to the co-evolution of antibiotic-producing and target organisms in the soil and other environments over millennia. The environmental "resistome" is the collection of all genes that directly or indirectly contribute to antibiotic resistance. Many of these resistance determinants originate in antibiotic-producing organisms (where they serve to mediate self-immunity), while others become resistance determinants only when mobilized and over-expressed in non-native hosts (like plasmid-encoded β-lactamases). The modern environmental resistome is under selective pressure from human activities such as agriculture, which may influence the composition of the local resistome and lead to gene transfer events. Beyond the environment, we are challenged in the clinic by the rise in both frequency and diversity of antibiotic resistant pathogens. We assume that clinical resistance originated in the environment, but few examples of direct gene exchange between the environmental resistome and the clinical resistome have been documented. Strong evidence exists to suggest that clinical aminoglycoside and vancomycin resistance enzymes, the extended-spectrum β-lactamase CTX-M and the quinolone resistance gene qnr have direct links to the environmental resistome. In this review, we highlight recent advances in our understanding of horizontal gene transfer of antibiotic resistance genes from the environment to the clinic. Improvements in sequencing technologies coupled with functional metagenomic studies have revealed previously underappreciated diversity in the environmental resistome, and also established novel genetic links to the clinic. Understanding mechanisms of gene exchange becomes vital in controlling the future dissemination of antibiotic resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667243 | PMC |
http://dx.doi.org/10.3389/fmicb.2013.00138 | DOI Listing |
Virol J
January 2025
Virology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University (SAU), New Delhi, 110068, India.
Maturation inhibitors (MIs) block HIV-1 maturation by preventing the cleavage of the capsid protein and spacer peptide 1 (CA-SP1). Bevirimat (BVM), a first-in-class MI, displayed sub-optimal efficacy in clinical trials due to presence of SP1:V7A polymorphism in the Gag protein.This polymorphism is inherently present in HIV-1 subtype C and conferred resistance to BVM.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Infectious Disease Epidemiology, Robert Koch Institute (RKI), Berlin, Germany.
Background: Carbapenem-resistant Gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA) are among WHO's priority pathogens with antimicrobial resistance (AMR). Studies suggest potential impacts of the COVID-19-pandemic on AMR. We described changes in AMR incidence and epidemiology in Germany during the COVID-19-pandemic.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
Staphylococcaceae are a diverse bacterial family with important implications for human and animal health. This study highlights the One Health relevance of their environmental dispersal, particularly, by identifying closely related or genetically identical strains circulating between farm and community environments. Environmental Staphylococcaceae strains were isolated from animal farms and interconnected areas within a university setting, both influenced by anthropogenic activities.
View Article and Find Full Text PDFNPJ Antimicrob Resist
January 2025
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Rescarch Center for Infectious Diseases, China-Singapore Belt and Road Joint Laboratory on Infection Research and Drug Development, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
Bacterial heteroresistance, a phenomenon where subpopulations within a bacterial strain exhibit significantly reduced antibiotic susceptibility compared to the main population, poses a major challenge in managing infectious diseases. It is considered an intermediate stage in the evolution of bacteria towards full resistance. Heteroresistant strains often have a minimal inhibitory concentration (MIC) that appears sensitive, making detection and differentiation in clinical settings difficult.
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
January 2025
National reference centre for Haemophilus influenzae, Department of microbiology, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Université libre de Bruxelles, Brussels, Belgium.
Introduction: Haemophilus influenzae plays a major role in invasive bacterial infections. Resistant strains are emerging, prompting the WHO to include H. influenzae on its list of priority pathogens for research and development of new antibiotics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!