A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiscale analysis of heart rate variability in non-stationary environments. | LitMetric

AI Article Synopsis

  • Heart rate variability (HRV) is affected by external factors and shows more fluctuations in stressful social situations, making it challenging to analyze compared to stable environments.
  • This study uses two advanced methods, adaptive fractal analysis (AFA) and scale-dependent Lyapunov exponent (SDLE), to examine differences in HRV between chronic fatigue syndrome (CFS) patients and healthy individuals during a social stress test.
  • Findings reveal significant HRV differences between CFS patients and controls before the stress test, but these differences lessen during the test, suggesting potential for HRV as a biomarker for CFS under different conditions.

Article Abstract

Heart rate variability (HRV) is highly non-stationary, even if no perturbing influences can be identified during the recording of the data. The non-stationarity becomes more profound when HRV data are measured in intrinsically non-stationary environments, such as social stress. In general, HRV data measured in such situations are more difficult to analyze than those measured in constant environments. In this paper, we analyze HRV data measured during a social stress test using two multiscale approaches, the adaptive fractal analysis (AFA) and scale-dependent Lyapunov exponent (SDLE), for the purpose of uncovering differences in HRV between chronic fatigue syndrome (CFS) patients and their matched-controls. CFS is a debilitating, heterogeneous illness with no known biomarker. HRV has shown some promise recently as a non-invasive measure of subtle physiological disturbances and trauma that are otherwise difficult to assess. If the HRV in persons with CFS are significantly different from their healthy controls, then certain cardiac irregularities may constitute good candidate biomarkers for CFS. Our multiscale analyses show that there are notable differences in HRV between CFS and their matched controls before a social stress test, but these differences seem to diminish during the test. These analyses illustrate that the two employed multiscale approaches could be useful for the analysis of HRV measured in various environments, both stationary and non-stationary.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667239PMC
http://dx.doi.org/10.3389/fphys.2013.00119DOI Listing

Publication Analysis

Top Keywords

hrv data
12
data measured
12
social stress
12
hrv
9
heart rate
8
rate variability
8
non-stationary environments
8
stress test
8
multiscale approaches
8
differences hrv
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!