Isomerization and peptide bond cleavage at aspartic residue (Asp) in peptide models have been reported. In this study, the mechanisms and energies concerning the isomerization and peptide bond cleavage at Asp residue were investigated by the density functional theory (DFT) at B3LYP/6-311++G(d,p). The integral equation formalism-polarizable continuum model (IEF-PCM) was utilized to calculate solvation effect by single-point calculation of the gas-phase B3LYP/6-311++G(d,p)-optimized structure. Mechanisms and energies of the dehydration in isomerization reaction of Asp residue were comparatively analyzed with the deamidation reaction of Asn residue. The results show that the succinimide intermediate was formed preferentially through the step-wise reaction via the tetrahedral intermediate. The cleavage at C-terminus is more preferential than those at N-terminus. In comparison to isomerization, peptide bond cleavage is ≈ 20 kcal mol(-1) and lower in activation barrier than the isomerization. So, in this case, the isomerization of Asp is inhibited by the peptide bond cleavage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-013-1889-6 | DOI Listing |
Langmuir
January 2025
Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States.
Antibiofouling peptide materials prevent the nonspecific adsorption of proteins on devices, enabling them to perform their designed functions as desired in complex biological environments. Due to their importance, research on antibiofouling peptide materials has been one of the central subjects of interfacial engineering. However, only a few antibiofouling peptide sequences have been developed.
View Article and Find Full Text PDFJ Struct Biol
January 2025
State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China. Electronic address:
Cryptosporidium has gained much attention as a major cause of diarrhea worldwide. Here, we present the first structure of H-2K complexed with a decapeptide from Cryptosporidium parvum Gp40/15 protein (Gp40/15-VTF10). In contrast to all published structures, the aromatic residue P3-Phe of Gp40/15-VTF10 is anchored in pocket C rather than the canonical Y/F at P5 or P6 reported for octapeptides and nonapeptides.
View Article and Find Full Text PDFOrg Lett
January 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
Dehydrophenylalanine has a characteristic unsaturated double bond that makes it indispensable in the context of peptides and proteins. In this study, we report the Pd-catalyzed C(sp)-H arylation of dehydroalanine-containing peptides with arylthianthrenium salts under mild and base free conditions, which provides efficient access to dehydrophenylalanine-containing peptides. This approach enables the efficient coupling of different drug scaffolds and bioactive molecules to the peptides.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, A-6020 Innsbruck, Austria.
Peptide bond formation from the pure protonated glycine dimer, H(Gly), and from the mixed protonated glycine-diglycine dimer, HGly(Gly), was recently found experimentally to occur in gas-phase experiments in the absence of any catalyst and especially under anhydrous conditions [, 2023, , 775]. In this contribution we further examine the conditions of such unimolecular reactions by means of density-functional theory calculations at the DFT/M06 2X/6-311G++(2df,p) level, focusing in particular on the role played by the protonation site. Two pathways, stepwise and concerted, are identified for the pure protonated dimer, and six pathways are examined for the mixed dimer.
View Article and Find Full Text PDFbioRxiv
December 2024
Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, UK.
Conjugation, the major driver of the spread of antimicrobial resistance genes, relies on a conjugation pilus for DNA transfer. Conjugative pili, such as the F-pilus, are dynamic tubular structures, composed of a polymerized pilin, that mediate the initial donor-recipient interactions, a process known as mating pair formation (MPF). IncH are low-copy-number plasmids, traditionally considered broad host range, which are found in bacteria infecting both humans and animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!