The paper contains the results of experimental studies on galvanic features of "implant-construction alloy" contact pair. These results may be used as criteria for implant-retained restorations alloy choice.

Download full-text PDF

Source

Publication Analysis

Top Keywords

alloy choice
8
[experimental base
4
base construction
4
construction alloy
4
choice implant-retained
4
implant-retained restorations]
4
restorations] paper
4
paper experimental
4
experimental studies
4
studies galvanic
4

Similar Publications

Comparison of Ceramic Bonding to Cobalt-Chromium, Zirconia and Nickel-Chromium Alloys Fabricated Using of Various Techniques.

J Biomed Mater Res B Appl Biomater

January 2025

Dental Materials Unit, Center for Dental Medicine, Clinic for Masticatory Disorders and Dental Biomaterials, University of Zurich, Zurich, Switzerland.

The purpose of this study was to evaluate the characteristics of the ceramic bonding to cobalt-chromium (Co-Cr) alloys fabricated by casting, milling, and additive manufacturing, compared with zirconia and nickel-chromium. One hundred specimens (N = 100), prepared with the dimensions of 25 × 3 × 0.5 mm, were assigned to five groups (n = 20): presintered milled Co-Cr (Group M), additively manufactured Co-Cr (Group SLM), cast Co-Cr (Group C), presintered zirconia (Group Zi), and cast Ni-Cr (Group Ni).

View Article and Find Full Text PDF

Traveling waves of excitation arise from the spatial coupling of local nonlinear events by transport processes. In corrosion systems, these electro-dissolution waves relay local perturbations across large portions of the metal surface, significantly amplifying overall damage. For the example of the magnesium alloy AZ31B exposed to sodium chloride solution, we report experimental results suggesting the existence of a vulnerable zone in the wake of corrosion waves where local perturbations can induce a unidirectional wave pulse or segment.

View Article and Find Full Text PDF

Introduction Spinal fusion surgery with pedicle screws is commonly performed to stabilize the spine of osteoporotic patients. However, securing a strong screw fixation in osteoporotic bone presents significant challenges due to the reduced bone density. This study aimed to compare the biomechanical performance in an osteoporotic bone model of pedicle screws inserted using two different techniques, the Jamshidi needle technique and the pedicle probe technique, as well as the influence of tapping on both these techniques.

View Article and Find Full Text PDF

The introduction of next-generation extremely energetic particle accelerator facilities, such as the High-Luminosity upgrade of the LHC (HL-LHC) or the proposed future circular collider (FCC), will dramatically increase the energy stored in the circulating particle beams. This will critically affect the thermo-physical and mechanical properties of the materials adopted, possibly compromising their reliability during the operating lifetime. In this scenario, it is paramount to assess the dynamic thermo-mechanical response of materials presently used, or being developed for future use, in beam intercepting devices exposed to potentially destructive events caused by the impact of energetic particle beams.

View Article and Find Full Text PDF

Due to the limited self-regeneration capacity of bone, medical interventions is often required for large segmental bone defects. In this study, the application of porous titanium alloy (Ti6Al4V) scaffold in bone defect repair was investigated. Owing to its excellent mechanical properties and biocompatibility, Ti6Al4V is a preferred choice for orthopedic implants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!