Unlabelled: The objective of this work was to develop and evaluate a floating-pulsatile drug delivery of atenolol. The floating-pulsatile concept was applied to increase the gastric residence of the dosage form by having lag phase followed by a burst release. The system was generated which consisted of three different parts: a core tablet, containing the active ingredient; an erodible outer shell; and a top cover buoyant layer. The dry, coated tablet consists in a drug-containing core, coated by a hydrophilic erodible polymer responsible for a lag phase in the onset of pulsatile release. The buoyant layer, prepared with hydroxypropyl methylcellulose (HPMC) K100 M, citric acid, and sodium bicarbonate, provides buoyancy to increase the retention of the oral dosage form in the stomach. The effect of the hydrophilic erodible polymer characteristics on the lag time and drug release was investigated. Developed formulations were evaluated for their physical properties in vitro release as well as in vivo behavior. The results showed that K3 (180 mg of HPMC K4 M) and K6 (290 mg of HPMC E15 LV) with a buoyant layer were the best formulation, with lag times of 5.2 ± 0.1 h and 4.1 ± 0.2 h, respectively. Floating time was controlled by the quantity and composition of the buoyant layer. In-vitro results point out the capability of the system with its prolonged residence of the tablets in the stomach and release of drug after a programmed lag time. This was confirmed by in vivo x-ray technique.
Lay Abstract: The objective of the present work was to develop a floating-pulsatile oral drug delivery system of atenolol with addition of hydroxylpropyl methylcellulose (HPMC) K100 M, HPMC K4 M, and HPMC E15 LV in different ratios with citric acid and sodium bicarbonate as gas-forming agents. The system consist of three different parts: a core tablet, containing the active ingredient; a bottom layer that erodes; and a top cover floating layer. Atenolol, a β-blocker, is prescribed widely in diverse cardiovascular diseases, for example, hypertension, angina pectoris, arrhythmias, and myocardial infarction. Developed formulations were evaluated for their physical properties and vitro release as well as in vivo behavior. The results showed that K3 (180 mg HPMC K4 M) and K6 (290 mg of HPMC E15 LV) with a buoyant layer were the best formulations with the lag times of 5.2 ± 0.1 h and 4.1 ± 0.2 h, respectively, and were found to be the best choice for manufacturing tablets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5731/pdajpst.2013.00916 | DOI Listing |
Adv Mater
December 2024
Dynamic Colloidal Systems Laboratory, Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India.
The design of chemomechanical self-oscillators, which execute oscillations in the presence of constant stimuli lacking periodicity, is a step toward the development of autonomous and interactive soft robotic systems. This work presents a simple design of prolonged chemomechanical oscillatory movement in a microgel system capable of buoyant motility within stratified chemical media containing spatially localized sinking and floating stimuli. Three design elements are developed: a stimuli-responsive membranized calcium alginate microgel, a Percoll density gradient for providing stratified antagonistic chemical media, and transduction of microgel particle size actuation into buoyant motility via membrane-mediated displacement of the Percoll media.
View Article and Find Full Text PDFWater Res
December 2024
Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China. Electronic address:
Microplastics have been proven to impact a broad range of marine species significantly. This study investigated the vertical distribution characteristics of microplastics (MPs) to verify their potential toxicity, distribution patterns, and affecting probability on organisms offshore of the East China Sea (ECS), China. Significant variations in MP characteristics across stratified water layers were identified and corroborated through artificial neural network (ANN) analysis.
View Article and Find Full Text PDFEnviron Pollut
January 2025
University of Ghent, Marine Biology Research Group (MarBiol), Krijgslaan 281 - s8, 9000, Gent, Belgium. Electronic address:
J Exp Biol
September 2024
Department of Biological Sciences, California Polytechnic State University San Luis Obispo, 1 Grand Ave, San Luis Obispo, CA 93407, USA.
Sea otters are extremely positively buoyant and spend most of their time resting at the water surface. It is understood that some of this buoyancy comes from the air layer that sea otters maintain in their pelage, with the lungs providing an additional source of positive buoyancy. Past studies have investigated the fur buoyant force in adult sea otters; however, little is known about the fur buoyant force in younger age classes.
View Article and Find Full Text PDFAnn Rev Mar Sci
September 2024
2Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!