Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Semiconducting bismuth sulfide (Bi2S3) nanoplates with unique highly oriented {001} surfaces were prepared on a large scale using a novel organic precursor Bi(DTCA)3 (DTCA = carbazole-9-carbodithioic acid). The as-prepared Bi2S3 nanoplates were dispersed in dimethyl sulfoxide (DMSO) and spin-coated onto an indium tin oxide (ITO) coated glass substrate. With a simple ITO/Bi2S3/Al stacked structure, the fabricated sandwich-like memory device demonstrates dynamic random access memory (DRAM) characteristics with a maximum ON/OFF current ratio up to 10(6) and a long retention time. It is suggested that the volatile nature of the memory device comes from the Schottky contact between the Bi2S3 nanoplates and the Al electrodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp50700a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!