Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Knowledge of how neutrophils respond to chemotactic signals in a complex inflammatory environment is not completely understood. Moreover, even less is known about factors in physiological fluids that regulate the activity of chemoattractants. The vitamin D-binding protein (DBP) has been shown to significantly enhance chemotaxis to complement activation peptide C5a using purified proteins in vitro, and by ex vivo depletion of DBP in physiological fluids, but this function has not been determined in vivo. DBP null ((-/-)) mice were used to investigate how a systemic absence of this plasma protein affects leukocyte recruitment in alveolitis models of lung inflammation. DBP(-/-) mice had significantly reduced (~50%) neutrophil recruitment to the lungs compared with their wild-type DBP(+/+) counterparts in three different alveolitis models, two acute and one chronic. The histology of DBP(-/-) mouse lungs also showed significantly less injury than wild-type animals. The chemotactic cofactor function of DBP appears to be selective for neutrophil recruitment, but, in contrast to previous in vitro results, in vivo DBP can enhance the activity of other chemoattractants, including CXCL1. The reduced neutrophil response in DBP(-/-) mice could be rescued to wild-type levels by administering exogenous DBP. Finally, in inflammatory fluids, DBP binds to G-actin released from damaged cells, and this complex may be the active chemotactic cofactor. To our knowledge, results show for the first time that DBP is a significant chemotactic cofactor in vivo and not specific for C5a, suggesting that this ubiquitous plasma protein may have a more significant role in neutrophil recruitment than previously recognized.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3702662 | PMC |
http://dx.doi.org/10.4049/jimmunol.1202941 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!