Molecular characterization and transcriptional regulation of a disintegrin and metalloproteinase with thrombospondin motif 1 (ADAMTS1) in bovine preovulatory follicles.

Endocrinology

Centre de Recherche en Reproduction Animale and the Département de Biomédecine, Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 7C6, Canada.

Published: August 2013

The ovulatory process involves a complex remodeling of the extracellular matrix during which a desintegrin and metalloproteinase with thrombospondin motif 1 (ADAMTS1) is thought to play a key role, but its transcriptional regulation in bovine follicles remains largely unknown. The objectives of this study were to characterize the regulation of ADAMTS1 in bovine follicles before ovulation and to determine its transcriptional control in bovine granulosa cells. Regulation of ADAMTS1 was assessed using total RNA isolated from bovine preovulatory follicles obtained at various times after human chorionic gonadotropin treatment. Results from RT-PCR analyses showed that levels of ADAMTS1 mRNA were very low at 0 hours but increased at 6 to 24 hours after human chorionic gonadotropin in granulosa cells. To determine the regulatory mechanisms controlling ADAMTS1 gene expression in vitro, primary cultures of bovine granulosa cells were established, and treatment with forskolin up-regulated ADAMTS1 mRNA levels. Promoter activity assays, 5'-deletion, and site-directed mutagenesis identified a minimal region conferring full-length basal and forskolin-stimulated ADAMTS1 promoter activities, with both being dependent on Ebox cis-acting elements. EMSAs revealed upstream stimulating factor (USF) proteins as key trans-activating factors interacting with Ebox. Chromatin immunoprecipitation assays confirmed such interactions between USF and Ebox in vivo, and USF binding to Ebox elements was increased by forskolin treatment. ADAMTS1 promoter activity and mRNA expression were increased by forskolin and overexpression of the catalytic subunit of protein kinase A, but not by cotreatment with inhibitors of protein kinase A, ERK1/2, and epidermal growth factor receptor signaling pathways. Furthermore, treatment with a soluble epidermal growth factor induced ADAMTS1 mRNA expression in granulosa cells. Collectively, results from this study describe the gonadotropin/forskolin-dependent up-regulation of ADAMTS1 mRNA in granulosa cells of bovine preovulatory follicles in vivo and in vitro and identify for the first time some of the molecular mechanisms responsible for ADAMTS1 promoter activation in follicular cells of a large monoovulatory species.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2013-1140DOI Listing

Publication Analysis

Top Keywords

granulosa cells
20
adamts1 mrna
16
adamts1
12
bovine preovulatory
12
preovulatory follicles
12
adamts1 promoter
12
transcriptional regulation
8
metalloproteinase thrombospondin
8
thrombospondin motif
8
motif adamts1
8

Similar Publications

Diabetes mellitus (DM) causes numerous systemic diseases in animals and humans. This may also lead to reproductive problems among individuals of reproductive age. Detrimental effects such as apoptosis in ovarian granulosa cells, degradation of communication proteins, decreased oocyte quality, delayed meiotic maturation, and atrophy are among the increasing evidence that chronic hyperglycemia causes reproductive problems.

View Article and Find Full Text PDF

Gengnianchun Against HO-Induced Oxidative Damage in KGN Cells via miR-548m/FOXO3 Signaling.

J Cell Biochem

January 2025

Department of Integrated Traditional Chinese Medicine and Western Medicine, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.

Gengnianchun (GNC) is a traditional remedy used for diminished ovarian reserve, but its underlying mechanisms remain unclear. This study aimed to explore these mechanisms in human granulosa-like cancer (KGN) cells pretreated with medicated rat serum (MRS) before HO exposure. MRS pretreatment significantly alleviated HO-induced cell damage, including improvements in cell viability, superoxide dismutase and GSH-Px activities, and Bcl-2 expression.

View Article and Find Full Text PDF

Network pharmacology uncovers that secoisolariciresinol diglucoside ameliorate premature ovarian insufficiency via PI3K/Akt pathway.

Sci Rep

January 2025

School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, No.461 Bayi Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China.

As one of the essential lignan derivative found in traditional Chinese medicinal herbs, secoisolariciresinol diglucoside (SDG) was proved to promote women's health through its phytoestrogenic properties. Increasingly studies indicated that this compound could be a potential drug capable of preventing estrogen-related diseases. Here, we aimed to investigate whether SDG can counteract cyclophosphamide (CTX) induced premature ovarian insufficiency (POI) and further explore its specific molecular mechanism.

View Article and Find Full Text PDF

We hypothesized that human chorionic gonadotropic (hCG) could replace LH in the maturation media for buffalo oocytes, and hCG administration before ovum pick-up (OPU) enhances in-vitro development of buffalo oocytes. Objectives were 1) to investigate the effect of hCG supplementation on nuclear maturation, oocyte development, and granulosa cell mRNA abundance of genes related to growth and antioxidant pathways and 2) to determine the effect of hCG administration before OPU on in-vitro oocyte development. In Experiment 1, buffalo oocytes retrieved from slaughterhouse ovaries were maturated in the media supplemented with 0.

View Article and Find Full Text PDF

Forkhead box L2 (FOXL2) encodes a transcription factor essential for sex determination, and ovary development and maintenance. Mutations in this gene are implicated in syndromes involving premature ovarian failure and granulosa cell tumors (GCTs). This rare cancer accounts for less than 5% of diagnosed ovarian cancers and is causally associated with the FOXL2 c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!