Both JNK and LRRK2 are associated with Parkinson's disease (PD). Here we report a reasonably selective and potent kinase inhibitor (compound 6) that bound to both JNK and LRRK2 (a dual inhibitor). A bidentate-binding strategy that simultaneously utilized the ATP hinge binding and a unique protein surface site outside of the ATP pocket was applied to the design and identification of this kind of inhibitor. Compound 6 was a potent JNK3 and modest LRRK2 dual inhibitor with an enzyme IC50 value of 12 nM and 99 nM (LRRK2-G2019S), respectively. Compound 6 also exhibited good cell potency, inhibited LRRK2:G2019S-induced mitochondrial dysfunction in SHSY5Y cells, and was demonstrated to be reasonably selective against a panel of 116 kinases from representative kinase families. Design of such a probe molecule may help enable testing if dual JNK and LRRK2 inhibitions have added or synergistic efficacy in protecting against neurodegeneration in PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759981PMC
http://dx.doi.org/10.1021/cb3006165DOI Listing

Publication Analysis

Top Keywords

dual inhibitor
12
jnk lrrk2
12
reasonably selective
8
inhibitor compound
8
lrrk2 dual
8
inhibitor
5
lrrk2
5
small molecule
4
molecule bidentate-binding
4
dual
4

Similar Publications

Stomata are epidermal pores that are essential for water evaporation and gas exchange in plants. Stomatal development is orchestrated by intrinsic developmental programs, hormonal controls, and environmental cues. The steroid hormone brassinosteroid (BR) inhibits stomatal lineage progression by regulating BIN2 and BSL proteins in leaves.

View Article and Find Full Text PDF

Unlabelled: Dysregulated epigenetic programs that restrict differentiation, reactivate fetal genes, and confer phenotypic plasticity are critical to colorectal cancer (CRC) development. By screening a small molecule library targeting epigenetic regulators using our dual reporter system, we found that inhibiting histone deacetylase (HDAC) 1/2 promotes CRC differentiation and anti-tumor activity. Comprehensive biochemical, chemical, and genetic experiments revealed that on-target blockade of the HDAC1/2 catalytic domain mediated the differentiated phenotype.

View Article and Find Full Text PDF

This study introduces novel cospray-dried (Co-SD) formulations of simvastatin, a Nrf2 activator ROCK inhibitor, with l-carnitine as molecular mixtures in various molar ratios for targeted pulmonary inhalation aerosol delivery in pulmonary hypertension, optimized for excipient-free dry powder inhalers (DPIs). The two components were spray-dried at various molar ratios by using different starting feed solution concentrations and process parameters. In addition to comprehensive physicochemical characterization, in vitro aerosol dispersion performance as DPIs using two FDA-approved DPI devices with different shear stress properties, in vitro viability as a function of dose on 2D human pulmonary cellular monolayers and on 3D small airway epithelia human primary cultures at the air-liquid interface (ALI), and in vitro transepithelial electrical resistance (TEER) at the ALI were conducted.

View Article and Find Full Text PDF

Discovery of MDI-114215: A Potent and Selective LIMK Inhibitor To Treat Fragile X Syndrome.

J Med Chem

December 2024

Medicines Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.

LIMKs are serine/threonine and tyrosine kinases responsible for controlling cytoskeletal dynamics as key regulators of actin stability, ensuring synaptic health through normal synaptic bouton structure and function. However, LIMK1 overactivation results in abnormal dendritic synaptic development that characterizes the pathogenesis of Fragile X Syndrome (FXS). As a result, the development of LIMK inhibitors represents an emerging disease-modifying therapeutic approach for FXS.

View Article and Find Full Text PDF

Programmed death protein-ligand 1 (PD-L1) inhibitors demonstrate significant antitumor efficacy by modulating T-cell activity and inhibiting the PD-1/PD-L1 pathway, thus enhancing immune responses. Despite their robust effects, systemic administration of these inhibitors is linked to severe immune toxicity. To address this issue, we engineered a strain, REP, which releases PD-L1 nanoantibodies (PD-L1nb) to treat breast cancer and attenuate immunotherapy-related side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!