Kinesin is a molecular motor that hydrolyzes adenosine triphosphate (ATP) and moves along microtubules against load. While motility and atomic structures have been well-characterized for various members of the kinesin family, not much is known about ATP hydrolysis inside the active site. Here, we study ATP hydrolysis mechanisms in the kinesin-5 protein Eg5 by using combined quantum mechanics/molecular mechanics metadynamics simulations. Approximately 200 atoms at the catalytic site are treated by a dispersion-corrected density functional and, in total, 13 metadynamics simulations are performed with their cumulative time reaching ~0.7 ns. Using the converged runs, we compute free energy surfaces and obtain a few hydrolysis pathways. The pathway with the lowest free energy barrier involves a two-water chain and is initiated by the Pγ-Oβ dissociation concerted with approach of the lytic water to PγO3-. This immediately induces a proton transfer from the lytic water to another water, which then gives a proton to the conserved Glu270. Later, the proton is transferred back from Glu270 to HPO(4)2- via another hydrogen-bonded chain. We find that the reaction is favorable when the salt bridge between Glu270 in switch II and Arg234 in switch I is transiently broken, which facilitates the ability of Glu270 to accept a proton. When ATP is placed in the ADP-bound conformation of Eg5, the ATP-Mg moiety is surrounded by many water molecules and Thr107 blocks the water chain, which together make the hydrolysis reaction less favorable. The observed two-water chain mechanisms are rather similar to those suggested in two other motors, myosin and F1-ATPase, raising the possibility of a common mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja401540gDOI Listing

Publication Analysis

Top Keywords

metadynamics simulations
12
adenosine triphosphate
8
atp hydrolysis
8
free energy
8
two-water chain
8
lytic water
8
reaction favorable
8
hydrolysis
5
water
5
triphosphate hydrolysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!