A series of mononuclear Fe(II) triflate complexes based on the 3,3-bis(1-alkylimidazole-2-yl)propionate ester (BAIP) ligand scaffold are reported. In these complexes, the tripodal N,N,O-BAIP ester ligand is varied by (i) changing the ester moiety (i.e., n-Pr, tert-Bu esters, n-Pr amide), (ii) changing the methylimidazole moieties to methylbenzimidazole moieties, and (iii) changing the methylimidazole moieties to 1-ethyl-4-isopropylimidazole moieties. The general structure of the resulting complexes comprises two facially capping BAIP ligands around a coordinatively saturated octahedral Fe(II) center, with either a transoid or cisoid orientation of the N,N,O-donor manifold that depends on the combined steric and electronic demand of the ligands. In the case of the sterically most encumbered ligand, a four-coordinate all N-coordinate complex is formed as well, which cocrystallizes with the six-coordinate complex. In combination with the catalytic properties of the new complexes in the epoxidation/cis-dihydroxylation of cyclooctene with H2O2, in terms of turnover number and cis-diol formation, these studies provide a number of insights for further ligand design and catalyst development aimed at Fe-mediated cis-dihydroxylation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic400096e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!