We report results of a clinical exploratory human trial involving 10 participants using a combination of a fluorescent ligand and a laser scanning device, SAPPHIRE System, as an aid in the diagnosis of Probable Alzheimer's disease (AD). To the best of our knowledge, this is the first time that such a technique has been used in vivo of a human lens. The primary goal of the clinical trial, in addition to safety assessment, was to evaluate efficacy of the system. By detecting specific fluorescent signature of ligand bound beta amyloid in the supranucleus (SN) region of the human lens, a twofold differentiation factor between AD patients and Control groups is achieved. Data from our studies indicates that deeper regions of the SN provide the highest measures of ligand bound fluorescence signal from both controls and patients with AD. In addition, we present preclinical studies that were performed to investigate the binding affinity of the ligand to beta amyloid and evaluate the pharmacokinetics of the ligand in rabbit eyes. Further studies are underway involving a larger population for statistical evaluation of the method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664322PMC
http://dx.doi.org/10.3389/fneur.2013.00062DOI Listing

Publication Analysis

Top Keywords

ligand bound
12
beta amyloid
12
alzheimer's disease
8
bound beta
8
human lens
8
ligand
6
disease diagnosis
4
diagnosis detecting
4
detecting exogenous
4
exogenous fluorescent
4

Similar Publications

Background: Scavenger receptors (SR) are a group of receptors involved in the endocytosis of various ligands, such as modified LDL and soluble β-amyloid, which connects them to Alzheimer's disease (AD). SCARF2 (SREC-II) is part of the SR family, but unlike other scavenger receptors, internalizes a low amount of modified LDL. Its main function revolves around the binding of Aβ (Vo et al.

View Article and Find Full Text PDF

Colloidal Germanium Quantum Dots with Broadly Tunable Size and Light Emission.

J Am Chem Soc

January 2025

McKetta Department of Chemical Engineering and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States.

Germanium (Ge) colloidal quantum dots (CQDs) were synthesized by thermal decomposition of GeI using capping ligand mixtures of oleylamine (OAm), octadecene (ODE), and trioctylphosphine (TOP). Average diameters could be tuned across a wide range, from 3 to 18 nm, by adjusting reactant concentrations, heating rates, and reaction temperatures. OAm promotes decomposition of GeI to Ge and serves as a weakly bound capping ligand.

View Article and Find Full Text PDF

Conformational Plasticity and Binding Affinity Enhancement Controlled by Linker Derivatization in Macrocycles.

Angew Chem Int Ed Engl

January 2025

Darmstadt University of Technology: Technische Universitat Darmstadt, Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Strasse 4, 64287, Darmstadt, GERMANY.

Article Synopsis
  • Macrocycles are natural and synthetic compounds that can enhance the ability of bioactive molecules to penetrate cells, with emerging guidelines for their design.
  • Even medium-sized macrocycles exhibit significant flexibility in shape, even while attached to target proteins, which allows for diverse conformations.
  • Minor linker modifications in these macrocycles can lead to new ligand formations with improved binding properties for important therapeutic targets, highlighting the unique benefits of macrocyclic structures in drug development.
View Article and Find Full Text PDF

Natural killer (NK) cells are essential elements of the innate immune response against tumors and viral infections. NK cell activation is governed by NK cell receptors that recognize both cellular (self) and viral (non-self) ligands, including MHC, MHC-related, and non-MHC molecules. These diverse receptors belong to two distinct structural families, the C-type lectin superfamily and the immunoglobulin superfamily.

View Article and Find Full Text PDF

Deciphering Saquinavir-Bovine Serum Albumin Interactions: Spectroscopic and Computational Insights.

J Mol Recognit

January 2025

Biopolymer Modeling and Protein Chemistry Laboratory, Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Chennai, India.

Bovine serum albumin (BSA) plays a crucial role as a carrier protein in plasma, binding various ligands, including drugs. Understanding the interaction between BSA and saquinavir, an antiretroviral drug, is essential for predicting its pharmacokinetics and pharmacodynamics. We employed spectroscopic approaches, including circular dichroism spectrometry and fluorescence spectroscopy, to investigate the binding of saquinavir to BSA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!