Background/aim: To investigate mechanisms of discrepancy in response to a MEK/ERK inhibitor, U0126, in KRAS- and BRAF-mutant colorectal cancer cells.

Materials And Methods: Multiparametric flow cytometry was performed on two colon cancer cell lines, HCT116 and HT29. Cells were treated with U0126, and phospho-specific antibodies were used to monitor ERK signaling.

Results: HCT116 and HT29 cells were treated with increasing amounts of U0126. The western blot analysis revealed that by increasing the amount of U0126 resulted in inhibition of phospho-ERK, in HCT116 and to a lesser degree in HT29 cells. Microarray profiling identified CYP1A1 and 1A2 overexpression in HT29 cells and that inhibition of CYP1A1 with α-naphthoflavone and furanfylline restored sensitivity to U0126 in HT29 cells.

Conclusion: Combination of a CYP inhibitor with MEK/ERK inhibitor enhances the inhibitory effect on ERK in BRAF-mutant colon cancer cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ht29 cells
16
mek/erk inhibitor
12
colon cancer
12
combination cyp
8
cyp inhibitor
8
inhibitor mek/erk
8
inhibitor enhances
8
enhances inhibitory
8
inhibitory erk
8
cancer cells
8

Similar Publications

This study aims to develop a thermoresponsive biomaterial system of irinotecan (IRT) and curcumin (CUR) nano-transferosomal gel (IRT-CUR-NTG) for targeting colorectal cancer (CRC). The IRT-CUR-NTs were statistically optimized and loaded into poloxamer-based thermosensitive gel. Transmission electron microscopy (TEM), Differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR) of the IRT-CUR-NTs were performed, whereas pH, gelation time, gelation temperature, gel and mucoadhesive strength of the IRT-CUR-NTG were investigated.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is an extremely harmful malignant tumor. Optic atrophy 3 (OPA3) is highly expressed in multiple tumors, but its action in CRC is still unknown. This research aims to explore the role of OPA3 and its related molecular mechanisms for CRC.

View Article and Find Full Text PDF

One of the most significant challenges for image-guided cancer-targeted therapy is to develop multifunctional optical contrast agents enabling simultaneous targeting and therapy. Herein, a feasible strategy is based on the incorporation of therapeutic moieties into the non-delocalized structure of polymethine indocyanines, known as the "structure-inherent targeting" concept. By possessing a rigid chloro-cyclohexenyl ring in the heptamethine cyanine backbone, a new type of multifunctional near-infrared fluorescent dye, Ph790H, that targets tumor without the need for additional targeting ligands is synthesized.

View Article and Find Full Text PDF

Background: The consumption of ultra-processed foods has increased significantly worldwide and is associated with the rise in inflammatory bowel diseases. However, any causative factors and their underlying mechanisms are yet to be identified. This study aimed to further elucidate whether different types of the dietary emulsifier carrageenan (CGN) can alter the permeability and inflammatory state of the intestinal epithelium.

View Article and Find Full Text PDF

TNF-α-Induced NF-κB Alter the Methylation Status of Some Stemness Genes in HT-29 Human Colon Cancer Cell.

Adv Biomed Res

November 2024

Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Background: Acquisition of stem-like properties requires overcoming the epigenetic barrier of differentiation and re-expression of several genes involved in stemness and the cell cycle. DNA methylation is the classic epigenetic mechanism for de/differentiation. The writers and erasers of DNA methylation are not site-specific enzymes for altering specific gene methylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!