Background: Few twin studies have examined nutrition-related phenotypes among children, and none has investigated energy and macronutrient intakes.
Objective: The objective was to quantify genetic and environmental influences on variations in energy and macronutrient intakes among children aged 9 years.
Design: We conducted a nutrition study among children participating in the Quebec Newborn Twin Study, a population-based birth cohort of twins. We derived dietary data from two multiple-pass 24-hour dietary recalls with a parent and his or her child. The analysis employed a classic twin study design and used data from 379 twin pairs.
Results: Univariate analyses indicate that heritability for mean daily energy (kcal) and macronutrient (g) intakes was moderate, ranging from 0.34 (95% CI: 0.22, 0.46) to 0.42 (0.31, 0.53). Genetic effects also accounted for 0.28 (0.16, 0.40) of the variance in percent of energy from lipids, while only environmental (shared and unique) effects accounted for the variance in percent of energy from proteins and carbohydrates. The shared environment did not contribute to variations in daily intakes for most of the nutritional variables under study. Multivariate analyses suggest the presence of macronutrient-specific genetic influences for lipids and carbohydrates, estimated at 0.12 (0.04, 0.19) and 0.20 (0.11, 0.29) respectively.
Conclusions: The unique environment (i.e., not shared by family members) has the largest influence on variances in daily energy and macronutrient intakes in 9-year-old children. This finding underscores the need to take obesogenic environments into account when planning dietary interventions for younger populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.physbeh.2013.05.039 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!