Specific neuron ablation with laser microbeam has been used in behavioral analysis of Caenorhabditis elegans. However, this method is hard to acquire many ablated worms, and is unable to compare behavioral changes just before and after ablation. Here, we developed an ablation method by using genetically encoded photosensitizer protein, KillerRed, which produces reactive oxygen species by green light irradiation. Ablation of AWA sensory neurons abolished the chemotaxis to AWA specific sensitive attractant, diacetyl, and no functional effect on the other sensory neuron, AWC, which senses benzaldehyde. This ablation method can be useful for analyzing neural in situ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2013.05.053 | DOI Listing |
Nat Commun
January 2025
Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
Oxidative stress, caused by the accumulation of reactive oxygen species (ROS), is a pathological factor in several incurable neurodegenerative conditions as well as in stroke. However, our knowledge of the genetic elements that can be manipulated to protect neurons from oxidative stress-induced cell death is still very limited. Here, using Caenorhabditis elegans as a model system, combined with the optogenetic tool KillerRed to spatially and temporally control ROS generation, we identify a previously uncharacterized gene, oxidative stress protective 1 (osp-1), that protects C.
View Article and Find Full Text PDFBiomedicines
November 2024
Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia.
Background: Despite the fundamental importance of cell membrane microviscosity, changes in this biophysical parameter of membranes during photodynamic therapy (PDT) have not been fully understood.
Methods: In this work, changes in the microviscosity of membranes of live HeLa Kyoto tumor cells were studied during PDT with KillerRed, a genetically encoded photosensitizer, in different cellular localizations. Membrane microviscosity was visualized using fluorescence lifetime imaging microscopy (FLIM) with a viscosity-sensitive BODIPY2 rotor.
Bioengineering (Basel)
June 2024
State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
The functional investigation of proteins holds immense significance in unraveling physiological and pathological mechanisms of organisms as well as advancing the development of novel pharmaceuticals in biomedicine. However, the study of cellular protein function using conventional genetic manipulation methods may yield unpredictable outcomes and erroneous conclusions. Therefore, precise modulation of protein activity within cells holds immense significance in the realm of biomedical research.
View Article and Find Full Text PDFSci Adv
March 2024
Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
Synergistic phototherapy stands for superior treatment prospects than a single phototherapeutic modality. However, the combined photosensitizers often suffer from incompatible excitation mode, limited irradiation penetration depth, and lack of specificity. We describe the development of upconversion dual-photosensitizer-expressing bacteria (UDPB) for near-infrared monochromatically excitable combination phototherapy.
View Article and Find Full Text PDFInt J Mol Sci
January 2024
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia.
This work was aimed at the complex analysis of the metabolic and oxygen statuses of tumors in vivo after photodynamic therapy (PDT). Studies were conducted on mouse tumor model using two types of photosensitizers-chlorin e6-based drug Photoditazine predominantly targeted to the vasculature and genetically encoded photosensitizer KillerRed targeted to the chromatin. Metabolism of tumor cells was assessed by the fluorescence lifetime of the metabolic redox-cofactor NAD(P)H, using fluorescence lifetime imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!