This study aimed to assess the possible systemic antinociceptive activity of mangiferin and to clarify the underlying mechanism, using the acute models of chemical (acetic acid, formalin, and capsaicin) and thermal (hot-plate and tail-flick) nociception in mice. Mangiferin at oral doses of 10 to 100 mg/kg evidenced significant antinociception against chemogenic pain in the test models of acetic acid-induced visceral pain and in formalin- and capsaicin-induced neuro-inflammatory pain, in a naloxone-sensitive manner, suggesting the participation of endogenous opiates in its mechanism. In capsaicin test, the antinociceptive effect of mangiferin (30 mg/kg) was not modified by respective competitive and non-competitive transient receptor potential vanilloid 1 (TRPV1) antagonists, capsazepine and ruthenium red, or by pretreatment with L-NAME, a non-selective nitric oxide synthase inhibitor, or by ODQ, an inhibitor of soluble guanylyl cyclase. However, mangiferin effect was significantly reversed by glibenclamide, a blocker of K(ATP) channels and in animals pretreated with 8-phenyltheophylline, an adenosine receptor antagonist. Mangiferin failed to modify the thermal nociception in hot-plate and tail-flick test models, suggesting that its analgesic effect is only peripheral but not central. The orally administered mangiferin (10-100 mg/kg) was well tolerated and did not impair the ambulation or the motor coordination of mice in respective open-field and rota-rod tests, indicating that the observed antinociception was unrelated to sedation or motor abnormality. The findings of this study suggest that mangiferin has a peripheral antinociceptive action through mechanisms that involve endogenous opioids, K(ATP)-channels and adenosine receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pbb.2013.05.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!