Intracellular NAD(P)H oxidoreductases are a class of diverse enzymes that are the key players in a number of vital processes. The method we present and validate here is based on the ability of many NAD(P)H oxidoreductases to reduce the superoxide probe lucigenin, which is structurally similar to flavins, to its highly fluorescent water-insoluble derivative dimethylbiacridene. Two modifications of the method are proposed: (i) an express method for tissue homogenate and permeabilized cells in suspensions and (ii) a standard procedure for cells in culture and acute thin tissue slices. The method allows one to assess, visualize, and localize, using fluorescent markers of cellular compartments, multiple NADH and NADPH oxidoreductase activities. The application of selective inhibitors (e.g., VAS2870, a NOX2 inhibitor; plumbagin, a NOX4 inhibitor) allows one to distinguish and compare specific NAD(P)H oxidoreductase activities in cells and tissues and to attribute them to known enzymes. The method is simple, rapid, and flexible. It can be easily adapted to a variety of tasks. It will be useful for investigations of the role of various NAD(P)H oxidoreductases in a number of physiological and pathophysiological processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2013.05.029 | DOI Listing |
Alzheimers Dement
December 2024
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Background: While disease-modifying treatments that reduce Aβ have been recently approved by the FDA, the identification of novel therapeutic targets and strategies that target underlying mechanisms to delay the AD development are still needed. Abnormal brain energy homeostasis and mitochondria dysfunction are observed early in AD. Therefore, the development of treatments to restore these defects could be beneficial.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Background: Despite recent FDA approvement of disease-modifying treatments that reduce Aβ, the identification of novel therapeutic strategies that could delay the Alzheimer's disease (AD) development are needed. We identified and developed novel small molecule compounds that mildly inhibit mitochondrial complex I (MCI). Chronic treatment with a tool compound CP2 in 4 mouse models of familial AD was efficacious protecting against synaptic dysfunction and memory impairment, improving brain energetics and cognitive performance, reducing levels of human pTau and Ab.
View Article and Find Full Text PDFPLoS One
December 2024
Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China.
Obesity is associated with abnormal repolarization manifested by QT interval prolongation, and oxidative stress is an important link between obesity and arrhythmias. However, the underlying electrophysiological and molecular mechanisms remain unclear. The aim of this study is to evaluate the role of obesity in potassium current in ventricular myocytes and the potential mechanism of NADPH oxidase 2 (Nox2).
View Article and Find Full Text PDFAsian Pac J Cancer Prev
December 2024
Center of Excellence in Applied Medical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
Objective: This study aimed to identify upregulated genes in HPV16-positive cervical cancer cells and investigate the impact of downregulating NAD(P) H:quinone oxidoreductase 1 (NQO1) on the survival of these cells.
Methods: Transcriptomic sequencing (RNA-seq) was utilized to pinpoint upregulated genes and associated cancer-related pathways in HPV16-positive cervical cancer cells, comparing them to HPV-negative cervical cancer cells. NQO1 gene knockdown was performed in HPV16-positive cervical cancer cell lines to assess its effect on cell survival, including parameters such as cell proliferation, migration, invasion, cell cycle progression, apoptosis, and the expression of key proteins in the PI3K/AKT pathway, p53, and RECK.
Cell Mol Life Sci
December 2024
Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
Background And Objectives: Maternal western-style diets that are high in glucose and fat have well-known cardiovascular effects on offspring, yet the combined influence of such diets during pregnancy is relatively less comprehended. This study investigates the impact of maternal high glucose and fat diet (HGF) on vascular constriction in offspring and the underlying mechanisms.
Methods And Results: Pregnant Sprague-Dawley rats were provided with either HGF or control diets.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!