Peptides modeled on the RGG domain of AUF1/hnRNP-D regulate 3' UTR-dependent gene expression.

Int Immunopharmacol

Veterans Administration Research Service, White River Junction, VT 05009, USA.

Published: September 2013

Messenger RNA binding proteins control post-transcriptional gene expression of targeted mRNAs. The RGG (arginine-glycine-glycine) domain of the AUF1/hnRNP-D mRNA binding protein is a regulatory region that is essential for protein function. The AUF1-RGG peptide, modeled on the RGG domain of AUF1, represses expression of the macrophage cytokine, VEGF. This report expands studies on the AUF1-RGG peptide and evaluates the role of post-translational modifications of the AUF1 protein. Results show that a minimal 31-amino acid AUF1-RGG peptide that lacks poly-glutamine and nuclear localization motifs retains suppressive activity on a VEGF-3'UTR reporter. Arginine residues in RGG motifs may be methylated with resulting changes in protein function. Mass spectroscopy analysis was performed on AUF1 expressed in RAW-264.7 cells. In resting cells, arginines in the first and second RGG motifs are monomethylated. Following activation with lipopolysaccharide, the arginines are dimethylated. To evaluate if the arginine residues are essential for AUF1-RGG activity, the methylatable arginines in the AUF1-3RGG peptide were mutated to lysine or alanine. The R→K and R→A mutants lack activity. We also demonstrate that PI3K/AKT inhibitors reduce VEGF gene expression. Although immunoscreening of AUF1 suggests that LPS and PI3K inhibitors alter the phosphorylation status of AUF1-p37, mass spectroscopy results show that the p37 AUF1 isoform is not phosphorylated with or without lipopolysaccharide stimulation. In summary, arginines in the RGG domain of AUF1 are methylated, and AUF1-RGG peptides may be novel reagents that reduce macrophage activation in inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711235PMC
http://dx.doi.org/10.1016/j.intimp.2013.05.014DOI Listing

Publication Analysis

Top Keywords

rgg domain
12
gene expression
12
auf1-rgg peptide
12
modeled rgg
8
domain auf1/hnrnp-d
8
protein function
8
domain auf1
8
arginine residues
8
rgg motifs
8
mass spectroscopy
8

Similar Publications

A biophysical basis for the spreading behavior and limited diffusion of Xist.

Cell

January 2025

Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA. Electronic address:

Xist RNA initiates X inactivation as it spreads in cis across the chromosome. Here, we reveal a biophysical basis for its cis-limited diffusion. Xist RNA and HNRNPK together drive a liquid-liquid phase separation (LLPS) that encapsulates the chromosome.

View Article and Find Full Text PDF

An Intrinsically Disordered RNA Binding Protein Modulates mRNA Translation and Storage.

J Mol Biol

January 2025

Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States; Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States. Electronic address:

Proteins with intrinsically disordered regions (IDR) play diverse functions in regulating gene expression in the cell. Many of these proteins interact with cytoplasmic ribosomes. However, the molecular functions related to the interactions are largely unclear.

View Article and Find Full Text PDF

The insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) is a conserved RNA-binding protein that regulates RNA stability, localization and translation. IGF2BP1 is part of various ribonucleoprotein (RNP) condensates. However, the mechanism that regulates its assembly into condensates remains unknown.

View Article and Find Full Text PDF

Abnormal intracellular phase transitions in mutant hnRNP A1 may underlie the development of several neurodegenerative diseases. The risk of these diseases increases upon repeat expansion and the accumulation of the corresponding G-quadruplex (G4)-forming RNA, but the link between this RNA and the disruption of hnRNP A1 homeostasis has not been fully explored so far. Our aim was to clarify the mutual effects of hnRNP A1 and C9Orf72 G4 in vitro.

View Article and Find Full Text PDF

Factors Affecting Liquid-Liquid Phase Separation of RGG Peptides with DNA G-Quadruplex.

ChemMedChem

January 2025

Frontiers of Innovative Research in Science and Technology, FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Hyogo, Kobe, 650-0047, Japan.

Liquid-liquid phase separation (LLPS), mediated by G-quadruplexes (G4 s) and intrinsically disordered proteins, particularly those containing RGG domains, plays a critical role in cellular processes and diseases. However, the molecular mechanism and the role of individual amino acid residues of the protein in LLPS with G4 (G4-LLPS) are still unknown. Here, we systematically designed peptides and investigated the roles of arginine residues in G4-LLPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!