Deubiquitinases (DUBs) play an important role in regulating the ubiquitin landscape of proteins. The DUB AMSH (associated molecule with the SH3 domain of STAM) has been shown to be involved in regulating the ubiquitin-dependent down-regulation of activated cell surface receptors via the endolysosomal degradative pathway. Therefore, small molecule AMSH inhibitors will be useful chemical probes to study the effect of AMSH DUB activity on cell surface receptor degradation. Currently, there are no known selective inhibitors of AMSH or high-throughput compatible assays for their identification. We report the development and optimization of a novel fluorescence resonance energy transfer (FRET)-based add-and-read AMSH DUB assay in a 384-well format. In this format, the optimal temperature for a high-throughput screen (HTS) was determined to be 30°C, the assay tolerates 5% dimethyl sulfoxide (DMSO), and it has a Z-score of 0.71, indicating HTS compatibility. The assay was used to show that AMSH selectively cleaves Lys63-linked diubiquitin over Lys48- and Lys11-linked diubiquitin. The IC50 value of the nonspecific small molecule DUB inhibitor N-ethylmaleimide was 16.2±3.2 μM and can be used as a qualitative positive control for the screen. We conclude that this assay is high-throughput compatible and can be used to identify novel small molecule inhibitors of AMSH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784021 | PMC |
http://dx.doi.org/10.1016/j.ab.2013.05.017 | DOI Listing |
Anal Methods
November 2017
Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
As an important small molecule, adenosine triphosphate (ATP) plays an important role in the regulation of cell metabolism and supplies energy for various biochemical reactions in organisms. We herein developed a sensitive surface-enhanced Raman scattering (SERS) biosensor for highly specific detection of ATP using core-satellite assemblies. To construct the aptamer-based biosensor, a known ATP binding aptamer was divided into two segments.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, 257091, Shandong, People's Republic of China.
Background: Atherosclerosis (AS) is increasingly recognized as a chronic inflammatory disease that significantly compromises vascular health and acts as a major contributor to cardiovascular diseases. Advancements in lipidomics and metabolomics have unveiled the complex role of fatty acid metabolism (FAM) in both healthy and pathological states. However, the specific roles of fatty acid metabolism-related genes (FAMGs) in shaping therapeutic approaches, especially in AS, remain largely unexplored and are a subject of ongoing research.
View Article and Find Full Text PDFSci China Life Sci
January 2025
Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, 100191, China.
Human primed pluripotent stem cells are capable of generating all the embryonic lineages. However, their extraembryonic trophectoderm potentials are limited. It remains unclear how to expand their developmental potential to trophectoderm lineages.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Ultrasound, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, China.
Histone acetyltransferases p300 (E1A-associated protein p300) and CBP (CREB binding protein), collectively known as p300/CBP due to shared sequence and functional synergy, catalyze histone H3K27 acetylation and consequently induce gene transcription. p300/CBP over-expression or over-activity activates the transcription of oncogenes, leading to cancer cell growth, resistance to apoptosis, tumor initiation and development. The discovery of small molecule inhibitors targeting p300/CBP histone acetyltransferase activity, bromodomains, dual inhibitors of p300/CBP and BRD4 bromodomains, as well as proteolysis-targeted-chimaera p300/CBP protein degraders, marks significant progress in cancer therapeutics.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Chemistry, University of Warwick, Coventry, UK.
Pectin is a major component of plant cells walls. The extent to which pectin chains crosslink with one another determines crucial properties including cell wall strength, porosity, and the ability of small, biologically significant molecules to access the cell. Despite its importance, significant gaps remain in our comprehension, at the molecular level, of how pectin cross-links influence the mechanical and physical properties of cell walls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!