How does iron deficiency disrupt the electron flow in photosystem I of lettuce leaves?

J Plant Physiol

Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada; Unité de Physiologie et de Biochimie de la Tolérance au Sel chez les Plantes, Faculté des Sciences de Tunis, Campus Universitaire, 1060, Tunisia.

Published: November 2013

The changes observed photosystem I activity of lettuce plants exposed to iron deficiency were investigated. Photooxidation/reduction kinetics of P700 monitored as ΔA820 in the presence and absence of electron transport inhibitors and acceptors demonstrated that deprivation in iron decreased the population of active photo-oxidizable P700. In the complete absence of iron, the addition of plant inhibitors (DCMU and MV) could not recover the full PSI activity owing to the abolition of a part of P700 centers. In leaves with total iron deprivation (0μM Fe), only 15% of photo-oxidizable P700 remained. In addition, iron deficiency appeared to affect the pool size of NADP(+) as shown by the decline in the magnitude of the first phase of the photooxidation kinetics of P700 by FR-light. Concomitantly, chlorophyll content gradually declined with the iron concentration added to culture medium. In addition, pronounced changes were found in chlorophyll fluorescence spectra. Also, the global fluorescence intensity was affected. The above changes led to an increased rate of cyclic electron transport around PSI mainly supported by stromal reductants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2013.05.004DOI Listing

Publication Analysis

Top Keywords

iron deficiency
12
kinetics p700
8
electron transport
8
photo-oxidizable p700
8
iron
7
p700
5
deficiency disrupt
4
disrupt electron
4
electron flow
4
flow photosystem
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!