Reactive oxygen species (ROS) generation is implicated in stem cell self-renewal in several tissues but is thought to be detrimental for spermatogenesis as well as spermatogonial stem cells (SSCs). Using cultured SSCs, we show that ROS are generated via the AKT and MEK signaling pathways under conditions where the growth factors glial cell line-derived neurotrophic factor and fibroblast growth factor 2 drive SSC self-renewal and, instead, stimulate self-renewal at physiological levels. SSCs depleted of ROS stopped proliferating, but they showed enhanced self-renewal when ROS levels were increased by the addition of hydrogen peroxide, which induced the phosphorylation of stress kinases p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase (JNK). Moreover, ROS depletion in vivo decreased SSC number in the testis, and NADPH oxidase 1 (Nox1)-deficient SSCs exhibited reduced self-renewal division upon serial transplantation. These results suggest that ROS generated by Nox1 play critical roles in SSC self-renewal via the activation of the p38 MAPK and JNK pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stem.2013.04.001DOI Listing

Publication Analysis

Top Keywords

spermatogonial stem
8
stem cell
8
cell self-renewal
8
ros generated
8
ssc self-renewal
8
ros
7
self-renewal
7
ros required
4
required mouse
4
mouse spermatogonial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!