Flagellar structures contribute to the virulence of multiple gastrointestinal pathogens either as the effectors of motility, as adhesins, or as a secretion apparatus for virulence factors. Escherichia coli F18ab variant strains are associated with edema disease (ED) in pig industries worldwide. These strains use flagella to increase the efficiency of epithelial cell invasion. In this study, we aimed to elucidate the mechanism by which flagella contribute to F18ab E. coli invasion. To explore the role of flagella in the invasion process, we performed invasion assays with either flagellated and motile, flagellated but non-motile, or non-flagellated non-motile bacteria. We observed that flagellated but non-motile bacteria invade piglet epithelial cells even more efficiently than the parent wild-type (WT) strain in vitro. By contrast, the non-flagellated bacteria have significantly reduced invasion as compared with the parent strain. These results demonstrate that flagella function mainly as adhesins to enhance the ability of F18ab E. coli to target piglet epithelial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2013.04.030 | DOI Listing |
Vet Microbiol
January 2025
College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China. Electronic address:
Porcine epidemic diarrhea virus (PEDV) is a member of the genus Alphacoronavirus in the family Coronaviridae, which has a mortality rate of up to 100 % in neonatal piglets and causes huge economic losses to the pig industry. The target cells of PEDV infection are porcine small intestinal epithelial cells, and the mechanism of PEDV invasion remains unclear. Our study found that dipeptidyl peptidase 4 (DPP4) acts as a cofactor for PEDV infection by promoting PEDV invasion and replication.
View Article and Find Full Text PDFVet Microbiol
December 2024
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China. Electronic address:
Rotavirus Group A (RVA) is a primary pathogen that causes viral diarrhea in humans and animals. Porcine rotaviruses (PoRVs) are widely epidemic in pig farms in China, causing great economic losses to the swine industry. In the past 30 years, the G5 RVA had been the main epidemic genotype in pig farms worldwide.
View Article and Find Full Text PDFVet Sci
December 2024
Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Sciences, Kemao Street No. 186, Gongzhuling 136100, China.
Porcine epidemic diarrhea virus (PEDV) induces enteritis and diarrhea in piglets. Mitochondrial DNA (mtDNA) contributes to virus-induced inflammatory responses; however, the involvement of inflammasomes in PEDV infection responses remains unclear. We investigated the mechanism underlying inflammasome-mediated interleukin (IL)-1β secretion during the PEDV infection of porcine intestinal epithelial (IPEC-J2) cells.
View Article and Find Full Text PDFJ Anim Sci
January 2023
Department of Animal Science, University of California, Davis, CA 95616, USA.
The objectives of this study were to investigate the in vitro immune-modulatory effects of monoglycerides and zinc glycinate with porcine alveolar macrophages (PAM) and their impact on epithelial barrier integrity using the intestinal porcine enterocyte cell line (IPEC-J2). Cell viability was assessed using a Vybrant MTT assay to determine the appropriate dose range of monoglyceride blend (C4, C8, and C10) and zinc glycinate. In experiment 1, IPEC-J2 cells (5 × 105 cells/mL) were seeded and treated with each compound (monoglycerides: 0, 25, 100, 250, 500, and 1,000 µg/mL; zinc glycinate: 0, 2, 5, 12.
View Article and Find Full Text PDFPNAS Nexus
December 2024
Department of Clinical Sciences Lund, Pediatrics, Lund University, 22184 Lund, Sweden.
Reduced serum level of insulin-like growth factor 1 (IGF-1), a major regulator of perinatal development, in extremely preterm infants has been shown to be associated with neurodevelopmental impairment. To clarify the mechanism of IGF-1 transport at the blood-cerebrospinal fluid (CSF) barrier of the immature brain, we combined studies of in vivo preterm piglet and rabbit models with an in vitro transwell cell culture model of neonatal primary murine choroid plexus epithelial (ChPE) cells. We identified IGF-1-positive intracellular vesicles in ChPE cells and provided data indicating a directional transport of IGF-1 from the basolateral to the apical media in extracellular vesicles (EVs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!