A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Efficient automatic selection and combination of EEG features in least squares classifiers for motor imagery brain-computer interfaces. | LitMetric

Discriminative features have to be properly extracted and selected from the electroencephalographic (EEG) signals of each specific subject in order to achieve an adaptive brain-computer interface (BCI) system. This work presents an efficient wrapper-based methodology for feature selection and least squares discrimination of high-dimensional EEG data with low computational complexity. Features are computed in different time segments using three widely used methods for motor imagery tasks and, then, they are concatenated or averaged in order to take into account the time course variability of the EEG signals. Once EEG features have been extracted, proposed framework comprises two stages. The first stage entails feature ranking and, in this work, two different procedures have been considered, the least angle regression (LARS) and the Wilcoxon rank sum test, to compare the performance of each one. The second stage selects the most relevant features using an efficient leave-one-out (LOO) estimation based on the Allen's PRESS statistic. Experimental comparisons with the state-of-the-art BCI methods shows that this approach gives better results than current state-of-the-art approaches in terms of recognition rates and computational requirements and, also with respect to the first ranking stage, it is confirmed that the LARS algorithm provides better results than the Wilcoxon rank sum test for these experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0129065713500159DOI Listing

Publication Analysis

Top Keywords

eeg features
8
motor imagery
8
eeg signals
8
wilcoxon rank
8
rank sum
8
sum test
8
eeg
5
features
5
efficient automatic
4
automatic selection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!