Multivalent macromolecular associations are widely observed in biological systems and are increasingly being utilized in bioengineering, nanomedicine, and biomaterial applications. Control over such associations usually demands an ability to reverse the multivalent binding. While in principle this can be done with binding site competitive inhibitors, dissociation is difficult in practice due to limited site accessibility when the macromolecule is bound. We demonstrate here efficient binding reversal of multivalent linear copolymers that adhere to any mammalian cell via the universal mechanism based on choline phosphate (CP) groups binding to phosphatidyl choline (PC)-containing biomembranes. Using a smart linear polymer exhibiting a lower critical solution temperature (LCST), we take advantage of the thermal contraction of the polymer above the LCST, which reduces accessibility of the CP groups to cell membrane PC lipids. The polymer construct can then desorb from the cell surface, reversing all effects of multivalent polymer adhesion on the cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm400466e | DOI Listing |
Langmuir
January 2025
Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
Zwitterionic polymers have gained considerable research attention because of their unique properties and have been widely used in many biomedical and electrochemical applications. Recently, zwitterionic polymers have been investigated for use as anti-icing/frosting surfaces; however, key factors influencing their anti-icing/frosting performance and effectiveness under real operational conditions remain underexplored. Therefore, in this study, we quantitatively analyze the hydration states of zwitterionic hydrogels synthesized from polymerizable zwitterions, such as carboxybetaine methacrylate (CBMA), 2-methacryloyloxyethyl phosphorylcholine (MPC), and sulfobetaine methacrylate (SBMA).
View Article and Find Full Text PDFLangmuir
January 2025
Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
Blood-bearing medical devices are essential for the delivery of critical care medicine and are often required to function for weeks to months. However, thrombus formation on their surfaces can lead to reduced device function and failure and expose patients to systemic thrombosis risks. While clinical anticoagulants reduce device related thrombosis, they also increase patient bleeding risk.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore.
Amphiphilic polymers with distinct polarity differences, known as sharp polarity contrast polymers (SPCPs), have gained much attention for their ability to form micelles with low critical micelle concentrations (CMCs) and potential in anticancer drug delivery. This study addresses the limited research on structure-property relationships of SPCPs by developing various SPCPs and exploring their physicochemical properties and biological applications. Specifically, the superhydrophobic aliphatic palmitoyl (Pal) was coupled to the superhydrophilic zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) to form Pal-pMPC diblock copolymers.
View Article and Find Full Text PDFJ Liposome Res
January 2025
SiteDel Group, Department of Pharmacy, University of Oslo, Blindern, Oslo, Norway.
In this study, liposomes consisting of soybean phosphatidyl choline (SoyPC) and different molar concentrations (10 mol% and 20 mol%) of dioleoyl trimethylammoniumpropane (DOTAP) were prepared by the thin film hydration method and coated with sodium hyaluronate (NaHA) of different MWs (8-15 kDa, 30-50 kDa and 90-130 kDa) and concentrations (0.01-0.2% w/w) using phosphate buffer (PB) or glycerol phosphate buffer (G-PB) as the hydration medium.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
Background: Polymethyl methacrylate (PMMA) is ideal for denture bases but is prone to biofilm accumulation, leading to denture stomatitis (DS), often involving . Dimethylaminohexadecyl methacrylate (DMAHDM) and 2-methacryloyloxyethyl phosphorylcholine (MPC) are introduced into dental materials for their antimicrobial and protein-repellent properties. This study investigates the effects of incorporating dimethylaminohexadecyl methacrylate (DMAHDM) and 2-methacryloyloxyethyl phosphorylcholine (MPC) into heat-polymerized (HP) and 3D-printed (3DP) denture base resins on microbial adhesion and cytotoxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!