Although it has become acceptable that neuroretinal cells are also affected in diabetes, vascular lesions continue to be considered as the hallmarks of diabetic retinopathy. Animal models are essential for the understanding and treatment of human diabetic retinopathy, and the mouse is intensively used as a model because of its similarity to human and the possibility to be genetically modified. However, until today not all retinal vascular lesions developed in diabetic patients have been reproduced in diabetic mice, and the reasons for this are not completely understood. In this review, we will summarize retinal vascular lesions found in diabetic and diabetic-like mouse models and its comparison to human lesions. The goal is to provide insights to better understand human and mice differences and thus, to facilitate the development of new mouse models that mimic better human diabetic retinopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/09298673113209990028 | DOI Listing |
J Mol Graph Model
January 2025
Department of Refraction, Baoji Aier Eye Hospital, Bao'ji, 721000, China. Electronic address:
In human eye, structural proteins, known as crystallins, play a crucial role in maintaining the eye's refractive index. These crystallins constitute majority of the total soluble proteins found in the eye lens. Among them, α-crystallins (α-CR) is one of the major components.
View Article and Find Full Text PDFMol Pharm
January 2025
Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China.
Numerous diseases, such as diabetic retinopathy and age-related macular degeneration, can lead to retinal neovascularization, which can seriously impair the visual function and potentially result in blindness. The presence of the blood-retina barrier makes it challenging for ocularly administered drugs to penetrate physiological barriers and reach the ocular posterior segments, including the retina and choroid. Herein, we developed an innovative bifunctional peptide, Tat-C-RP7, which exhibits excellent penetration capabilities and antiangiogenic properties aimed at treating retinal neovascularization diseases.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Institute of Translational Genomics, Helmholtz Zentrum München- German Research Center for Environmental Health, Ingolstädter Landstraße 1, Neuherberg 85764, Germany.
Type 2 diabetes (T2D) complications pose a significant global health challenge. Omics technologies have been employed to investigate these complications and identify the biological pathways involved. In this review, we focus on four major T2D complications: diabetic kidney disease, diabetic retinopathy, diabetic neuropathy, and cardiovascular complications.
View Article and Find Full Text PDFBMJ Open
December 2024
Westmead Institute for Medical Research, Westmead, New South Wales, Australia
Introduction: Diabetic macular oedema (DMO), a serious ocular complication of diabetic retinopathy (DR), is a leading cause of vision impairment worldwide. If left untreated or inadequately treated, DMO can lead to irreversible vision loss and blindness. Intravitreal injections using antivascular endothelial growth factor (anti-VEGF) and laser are the current standard of treatment for DMO.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road, Wuhan, Hubei, 430060, China.
Diabetic retinopathy is a major ocular complication of diabetes, characterized by progressive retinal microvascular damage and significant visual impairment in working-age adults. Traditional bulk RNA sequencing offers overall gene expression profiles but does not account for cellular heterogeneity. Single-cell RNA sequencing overcomes this limitation by providing transcriptomic data at the individual cell level and distinguishing novel cell subtypes, developmental trajectories, and intercellular communications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!