Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the present investigation, we have defined a novel biopolymer from Bacillus megaterium strain with novel melt stability, high tensile strength, and elongation to break properties higher to polypropylene and similar to polyethylene the polymers available commercially. The polymer was characterized with FTIR and XRD. The percent crystalinity was found to 44.09% with tensile strength 42 (Mpa) and elongation to break (%) 142 higher than polypropylene. The polymeric properties were confirmed by differential scanning calorimeter and universal testing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jobm.201300277 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!