Enzymatic activity preservation and protection through entrapment within degradable hydrogels.

Biotechnol Bioeng

Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, 20742.

Published: November 2013

This work aims to develop a repeatable enzyme entrapment method that preserves activity within an amicable environment while resisting activity reduction in the presence of environmental challenges. Advances in such methods have wide potential use in biosensor applications. In this work β-galactosidase (lactase) enzyme was entrapped within hydrogel matrices of acrylamide (ACR) crosslinked with N,N'-methylenebisacrylamide (BIS, non-degradable) or poly(ethylene glycol) diacrylate (PEGDA, degradable) to create "biogels." Diffusivity studies of control, enzyme free, hydrogel constructs showed near-Fickian swelling behavior in PBS regardless of crosslinker type or density. As expected, the swelling rate, Ks , decreased when increasing the crosslink density from 78.6 to 14.7 min⁻¹ over a range of 1-20 mol% PEGDA indicating that diffusivity into the matrix is dependent on crosslink density. Fabricated biogels were evaluated for maintained enzyme activity in the 7 and 8 pH range. PEGDA crosslinked gels consistently showed improved enzymatic activity retention as compared to BIS crosslinked gels. As PEGDA crosslink density increased from 5 to 10 mol%, enzymatic activity retention post-initial entrapment increased. Higher PEGDA crosslink densities between 15% and 40% decreased enzymatic activity due to assumed steric hindrance of the entrapped enzyme and also decreased substrate and product diffusion. Increased enzymatic stability was observed in 40 mol% PEGDA crosslinked gels. The biogels were pH challenged to 8.0 and stability, measured as retention of activity, was observed to be 91%. Free, non-entrapped, solution based enzyme conversion only retained 23% activity under the same pH challenge conditions. No significant loss of active enzyme was determined to elute out of the biogels during storage in PBS or during biogel wash and recycling. This entrapment method illustrates the potential to sterically hinder and diffusively impede enzymes from performing their function. Degradation of the network crosslinks can then potentially enable the reactivation of the enzyme at a site and time dictated by the user.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.24971DOI Listing

Publication Analysis

Top Keywords

enzymatic activity
16
crosslink density
12
crosslinked gels
12
enzyme
8
entrapment method
8
activity
8
pegda crosslinked
8
activity retention
8
pegda crosslink
8
pegda
6

Similar Publications

Identification and functional characterization of AsWRKY9, a WRKY transcription factor modulating alliin biosynthesis in garlic (Allium sativum L.).

BMC Biol

January 2025

The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.

Background: The variations in alliin content are a crucial criterion for evaluating garlic quality and is the sole precursor for allicin biosynthesis, which is significant for the growth, development, and stress response of garlic. WRKY transcription factors are essential for enhancing stress resistance by regulating the synthesis of plant secondary metabolites. However, the molecular mechanisms regulating alliin biosynthesis remain unexplored.

View Article and Find Full Text PDF

Fine tuning enzyme activity assays for monitoring the enzymatic hydrolysis of PET.

Sci Rep

January 2025

Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania.

Efficient monitoring of the enzymatic PET-hydrolysis is crucial for developing novel plastic-degrading biocatalysts. Herein, we aimed to upgrade in terms of accuracy the analytical methods useful for monitoring enzymatic PET-degradation. For the HPLC-based assessment, the incorporation of an internal standard within the analytic procedure enabled a more accurate quantification of the overall TPA content and the assessment of molar distributions and relative content of each aromatic degradation product.

View Article and Find Full Text PDF

Abiotic stresses, notably cold stress, significantly influence various aspects of plant development and reproduction. Various approaches have been proposed to counteract the adverse impacts of cold stress on plant productivity. The unique properties of nanoparticles contribute to an enhanced tolerance of plants to challenging conditions.

View Article and Find Full Text PDF

Lithocarpus litseifolius is rich in the chalcones phloridzin and trilobatin, the biosynthesis pathways of which have not been fully demonstrated. Chalcone synthase(CHS) is the first key rate-limiting enzyme in the biosynthesis of flavonoids in plants. To explore the functions of CHS gene family in chalcone synthesis of L.

View Article and Find Full Text PDF

Discovery and mechanistic exploration of promiscuous xylosyltransferase based on protein engineering.

Int J Biol Macromol

January 2025

National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.

Glycosylation is an effective means to alter the structure and properties of plant compounds, influencing the pharmacological activity of natural products (NPs) to obtain highly active NPs. In nature, glucosides are the most widely distributed, while other glycosides such as xylosides are less common and present in lower quantities. This is due to the scarcity of xylosyltransferases with substrate promiscuity in nature, and the modification of their catalytic function is also quite challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!