The oxidative C-C bond cleavage of o-aminophenols by nonheme Fe dioxygenases is a critical step in both human metabolism (the kynurenine pathway) and the microbial degradation of nitroaromatic pollutants. The catalytic cycle of o-aminophenol dioxygenases (APDOs) has been proposed to involve formation of an Fe(II)/O2/iminobenzosemiquinone complex, although the presence of a substrate radical has been called into question by studies of related ring-cleaving dioxygenases. Recently, we reported the first synthesis of an iron(II) complex coordinated to an iminobenzosemiquinone (ISQ) ligand, namely, [Fe((Ph2)Tp)((tBu)ISQ)] (2a; where (Ph2)Tp=hydrotris(3,5-diphenylpyrazol-1-yl)borate and (tBu)ISQ is the radical anion derived from 2-amino-4,6-di-tert-butylphenol). In the current manuscript, density functional theory (DFT) calculations and a wide variety of spectroscopic methods (electronic absorption, Mössbauer, magnetic circular dichroism, and resonance Raman) were employed to obtain detailed electronic-structure descriptions of 2a and its one-electron oxidized derivative [3a](+). In addition, we describe the synthesis and characterization of a parallel series of complexes featuring the neutral supporting ligand tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine ((Ph2)TIP). The isomer shifts of about 0.97 mm s(-1) obtained through Mössbauer experiments confirm that 2a (and its (Ph2)TIP-based analogue [2b](+)) contain Fe(II) centers, and the presence of an ISQ radical was verified by analysis of the absorption spectra in light of time-dependent DFT calculations. The collective spectroscopic data indicate that one-electron oxidation of the Fe(II)-ISQ complexes yields complexes ([3a](+) and [3b](2+)) with electronic configurations between the Fe(III)-ISQ and Fe(II)-IBQ limits (IBQ=iminobenzoquinone), highlighting the ability of o-amidophenolates to access multiple oxidation states. The implications of these results for the mechanism of APDOs and other ring-cleaving dioxygenases are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965334PMC
http://dx.doi.org/10.1002/chem.201300520DOI Listing

Publication Analysis

Top Keywords

o-aminophenol dioxygenases
8
ring-cleaving dioxygenases
8
dft calculations
8
dioxygenases
5
synthetic spectroscopic
4
spectroscopic dft
4
dft studies
4
studies iron
4
complexes
4
iron complexes
4

Similar Publications

We have discovered a new cluster of genes that is found exclusively in the Actinobacteria phylum. This locus includes genes for the 2-aminophenol -cleavage pathway and the shell proteins of a bacterial microcompartment (BMC) and has been named aromatics (ARO) for its putative role in the breakdown of aromatic compounds. In this study, we provide details about the distribution and composition of the ARO BMC locus and conduct phylogenetic, structural, and functional analyses of the first two enzymes in the catabolic pathway: a unique 2-aminophenol dioxygenase, which is exclusively found alongside BMC shell genes in Actinobacteria, and a semialdehyde dehydrogenase, which works downstream of the dioxygenase.

View Article and Find Full Text PDF

Oxidative C-C bond cleavage of 2-aminophenols mediated by transition metals and dioxygen is a topic of great interest. While the oxygenolytic C-C bond cleavage reaction relies on the inherent redox non-innocent property of 2-aminophenols, the metal complexes of 2-aminophenolates often undergo 1e-/2e- oxidation events (metal or ligand oxidation), instead of the direct addition of O2 for subsequent C-C bond cleavage. In this work, we report the isolation, characterization and dioxygen reactivity of a series of ternary iron(ii)-2-aminophenolate complexes [(TpPh,Me)FeII(X)], where X = 2-amino-4-tert-butylphenolate (4-tBu-HAP) (1); X = 2-amino-4,6-di-tert-butylphenolate (4,6-di-tBu-HAP) (2); X = 2-amino-4-nitrophenolate (4-NO2-HAP)(3); and X = 2-anilino-4,6-di-tert-butylphenolate (NH-Ph-4,6-di-tBu-HAP) (4) supported by a facial tridentate nitrogen donor ligand (TpPh,Me = hydrotris(3-phenyl-5-methylpyrazol-1-yl)borate).

View Article and Find Full Text PDF

Expression and characterization of the key enzymes involved in 2-benzoxazolinone degradation by Pigmentiphaga sp. DL-8.

Bioresour Technol

January 2018

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China. Electronic address:

In this study, the key enzymes involved in 2-benzoxazolinone (BOA) degradation by Pigmentiphaga sp. DL-8 were further verified and characterized in Escherichia coli. By codon optimization and co-expression of molecular chaperones in a combined strategy, recombinant BOA amidohydrolase (rCbaA) and 2-aminophenol (2-AP) 1,2-dioxygenase (rCnbCC) were expressed and purified with the highest activity of 1934.

View Article and Find Full Text PDF

Oxygenative aromatic ring cleavage of 2-aminophenol with dioxygen catalyzed by a nonheme iron complex: catalytic functional model of 2-aminophenol dioxygenases.

Inorg Chem

February 2015

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.

2-Aminophenol dioxygenases catalyze the oxidative ring cleavage of 2-aminophenol to 2-picolinic acid using O2 as the oxidant. Inspired by the reaction catalyzed by these nonheme iron enzymes, a biomimetic iron(III)-2-amidophenolate complex, [(tBu-L(Me))Fe(III)(4,6-di-tBu-AP)](ClO4) (1a) of a facial tridentate ligand (tBu-L(Me) = 1-[bis(6-methyl-pyridin-2-yl)-methyl]-3-tert-butyl-urea and 4,6-di-tBu-H2AP = 2-amino-4,6-di-tert-butylphenol) bearing a urea group have been isolated. The complex reacts with O2 to cleave the C-C bond of 4,6-di-tBu-AP regioselectively and catalytically to afford 4,6-di-tert-butyl-2-picolinic acid.

View Article and Find Full Text PDF

Novel degradation pathway of 4-chloro-2-aminophenol via 4-chlorocatechol in Burkholderia sp. RKJ 800.

Environ Sci Pollut Res Int

February 2014

Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, 243006, India.

Burkholderia sp. RKJ 800 utilized 4-chloro-2-aminophenol (4C2AP) as the sole carbon and energy source and degraded it with release of chloride and ammonium ions. The metabolic pathway of degradation of 4C2AP was studied and a novel intermediate, 4-chlorocatechol was identified as a major degradation product of 4C2AP using high-performance liquid chromatography and gas chromatography-mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!