A gastric-retentive formulation amenable to dosing in rodents has the potential to enable sustained release in a preclinical setting. This may be useful to provide systemic exposure over a longer duration or to increase duration of exposure for compounds with targets localized in the gastrointestinal tract. Previous work has shown that a mixture of 1% sodium alginate and 0.625% karaya gum in the presence of a calcium chelator can form gels in situ that are gastric retained in rats. The aim of this work was to define the physicochemical boundaries of compounds within this technology and their relation to in vivo release using a series of model compounds with high permeability but varying solubility. In vitro data demonstrated a good correlation between solubility and initial release rates from the gels. In vivo studies were conducted in Sprague-Dawley rats to compare the exposure profile of compounds dosed in gel relative to a standard formulation. In vivo data were consistent with trends from the in vitro studies. These data suggest that, in conjunction with an understanding of compound solubility, sodium alginate/karaya gum gels may be a useful tool to modulate exposure profiles in rodent models in a preclinical setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.23630 | DOI Listing |
Methods Cell Biol
January 2025
Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg.
During hypoxia, tissues are subjected to an inadequate oxygen supply, disrupting the balance needed to maintain normal function. This deficiency can occur due to reduced oxygen delivery caused by impaired blood flow or a decline in the blood's ability to carry oxygen. In tumors, hypoxia and vascularization play crucial roles, shaping their microenvironments and influencing cancer progression, response to treatment and metastatic potential.
View Article and Find Full Text PDFCrit Rev Oncol Hematol
January 2025
Edinburgh Cancer Research, CRUK Scotland Centre, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2RX, UK. Electronic address:
Soft tissue sarcomas (STS) represent a large group of rare and ultra-rare tumors distinguished by unique morphological, molecular and clinical features. Patients with such rare cancers are generally underrepresented in clinical trials which has limited the introduction of new treatment options and subsequent improvement of patient outcomes. Preclinical models of STS that recapitulate the human disease can aid progress in identifying new effective treatments.
View Article and Find Full Text PDFJ Racial Ethn Health Disparities
January 2025
Department of Medical and Surgical Sciences (DIMEC), St.Orsola-Malpighi Hospital, Alma Mater University of Bologna, Via Massarenti 9, 40138, Bologna, Italy.
Ethnic prejudice in healthcare has been widely examined, yet little is known about its intersection with stigma and prejudice based on one's health status. The present study investigates the intersections of ethnic prejudice and stigma of chronic disease in a healthcare setting as shaping unique forms of disadvantage. From an intersectional perspective, we examined whether ethnically diverse patients affected by stigmatized health conditions would be differentially perceived and cared for by prospective medical doctors.
View Article and Find Full Text PDFDiabetes
January 2025
Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA.
Increasing evidence shows that pathogenic T cells in type 1 diabetes (T1D) that may have evaded negative selection recognize post-translational modified (PTM) epitopes of self-antigens. We have investigated the profiles of autoantibodies specifically targeting the deamidated epitopes of insulinoma antigen-2 extracellular domain (IA-2ec) to explore their relationship with T1D development. We compared the characteristics of autoantibodies targeting the IA-2ec Q>E epitopes (PTM IA-2ecA) as well as those targeting the IA-2ec unmodified epitopes (IA-2ecA) in participants across different stages of T1D development and in individuals with other types of diabetes and other kinds of autoimmunity.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, Paris, France.
Patient-derived xenografts (PDX) of breast cancer, obtained from the engraftment of tumour samples into immunodeficient mice, are the most effective preclinical models for studying the biology of human breast cancer and for the evaluation of new anti-cancer treatments. Notably, breast cancer PDX preserve the phenotypic and molecular characteristics of the donor tumours and reproduce the diversity of breast cancer. This preservation of breast cancer biology involves a number of different aspects, including tumour architecture and morphology, patterns of genomic alterations and gene expression, mutational status, and intra-tumour heterogeneity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!