α1-Protease inhibitor Portland (α1PDX) is an engineered serpin family inhibitor of the proprotein convertase (PC), furin, that exhibits high specificity but limited selectivity for inhibiting furin over other PC family proteases. Here, we characterize serpin B8, a natural inhibitor of furin, together with α1PDX-serpin B8 and furin-PC chimeras to identify determinants of serpin specificity and selectivity for furin inhibition. Replacing reactive center loop (RCL) sequences of α1PDX with those of serpin B8 demonstrated that both the P4-P1 RXXR recognition sequence as well as the P1'-P5' sequence are critical determinants of serpin specificity for furin. Alignments of PC catalytic domains revealed four variable active-site loops whose role in furin reactivity with serpin B8 was tested by engineering furin-PC loop chimeras. The furin(298-300) loop but not the other loops differentially affected furin reactivity with serpin B8 and α1PDX in a manner that depended on the serpin RCL-primed sequence. Modeling of the serpin B8-furin Michaelis complex identified serpin exosites in strand 3C close to the 298-300 loop whose substitution in α1PDX differentially affected furin reactivity depending on the furin loop and serpin RCL-primed sequences. These studies demonstrate that RCL-primed residues, strand 3C exosites, and the furin(298-300) loop are critical determinants of serpin reactivity with furin, which may be exploited in the design of specific and selective α1PDX inhibitors of PCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724637 | PMC |
http://dx.doi.org/10.1074/jbc.M113.462804 | DOI Listing |
J Biomol Struct Dyn
January 2025
Laboratory of Biology and Health, URAC 34, Faculty of Sciences, Ben M'Sik Hassan II University of Casablanca, Casablanca, Morocco.
The recent spread of SARS-CoV-2 has led to serious concerns about newly emerging infectious coronaviruses. Drug repurposing is a practical method for rapid development of antiviral agents. The viral spike protein of SARS-CoV-2 binds to its major receptor ACE2 to promote membrane fusion.
View Article and Find Full Text PDFBMC Health Serv Res
January 2025
HIV and Other Infectious Diseases Research Unit (HIDRU), South African Medical Research Council: CAPRISA-MRC HIV-TB Pathogenesis and Treatment Research Unit, Free State, South Africa.
Background: Despite advances in drug-resistant tuberculosis (DR-TB) diagnosis, treatment, and service delivery, individuals with DR-TB often face significant socioeconomic and psychosocial challenges due to limited resources. These challenges can hinder retention in care, undermining the progress made in DR-TB management. As a consequence, advances in DR-TB diagnostics and treatment have not resulted in DR-TB programs meeting the 75% treatment success targets set by the World Health Organization (WHO).
View Article and Find Full Text PDFRev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
Rapid tissue repair is also needed in the event of damage to blood vessels. Most of the essential steps that prevent us from bleeding to death involve the functions of Von Willebrand factor (VWF) and many of these are dependent on electrical forces.
View Article and Find Full Text PDFMaternal exposures are known to influence the risk of isolated cleft lip with or without cleft palate (CL/P) - a common and highly heritable birth defect with a multifactorial etiology. To identify new CL/P risk loci, we conducted a genome-wide gene-environment interaction (GEI) analysis of CL/P on a sample of 540 cases and 260 controls recruited from the Philippines, incorporating the interaction effects of genetic variants with maternal smoking and vitamin use. As GEI analyses are typically low in power and the results can be difficult to interpret, we used multiple testing frameworks to evaluate potential GEI effects: 1 degree-of-freedom (1df) GxE test, the 3df joint test, and the two-step EDGE approach.
View Article and Find Full Text PDFProteolysis targeting chimeras (PROTACs) are pivotal in cancer therapy for their ability to degrade specific proteins. However, their non-specificity can lead to systemic toxicity due to protein degradation in normal cells. To address this, we have integrated a nanobody into the PROTACs framework and leveraged the tumor microenvironment to enhance drug specificity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!