A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Acute food deprivation reverses morphine-induced locomotion deficits in M5 muscarinic receptor knockout mice. | LitMetric

Acute food deprivation reverses morphine-induced locomotion deficits in M5 muscarinic receptor knockout mice.

Behav Brain Res

Department of Psychology, University of Toronto, 100 Saint George Street, Toronto, Ontario M5S 3G3, Canada.

Published: September 2013

Lesions of the pedunculopontine tegmental nucleus (PPT), one of two sources of cholinergic input to the ventral tegmental area (VTA), block conditioned place preference (CPP) for morphine in drug-naïve rats. M5 muscarinic cholinergic receptors, expressed by midbrain dopamine neurons, are critical for the ability of morphine to increase nucleus accumbens dopamine levels and locomotion, and for morphine CPP. This suggests that M5-mediated PPT cholinergic inputs to VTA dopamine neurons critically contribute to morphine-induced dopamine activation, reward and locomotion. In the current study we tested whether food deprivation, which reduces PPT contribution to morphine CPP in rats, could also reduce M5 contributions to morphine-induced locomotion in mice. Acute 18-h food deprivation reversed the phenotypic differences usually seen between non-deprived wild-type and M5 knockout mice. That is, food deprivation increased morphine-induced locomotion in M5 knockout mice but reduced morphine-induced locomotion in wild-type mice. Food deprivation increased saline-induced locomotion equally in wild-type and M5 knockout mice. Based on these findings, we suggest that food deprivation reduces the contribution of M5-mediated PPT cholinergic inputs to the VTA in morphine-induced locomotion and increases the contribution of a PPT-independent pathway. The contributions of cholinergic, dopaminergic and GABAergic neurons to the effects of acute food deprivation are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2013.05.053DOI Listing

Publication Analysis

Top Keywords

food deprivation
28
morphine-induced locomotion
20
knockout mice
16
acute food
8
locomotion
8
dopamine neurons
8
morphine cpp
8
m5-mediated ppt
8
ppt cholinergic
8
cholinergic inputs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!