Sequencing viral genomes from a single isolated plaque.

Virol J

Department of Genomic Medicine, The J. Craig Venter Institute (JCVI), 9704 Medical Center Drive, Rockville, MD 20850, USA.

Published: June 2013

Background: Whole genome sequencing of viruses and bacteriophages is often hindered because of the need for large quantities of genomic material. A method is described that combines single plaque sequencing with an optimization of Sequence Independent Single Primer Amplification (SISPA). This method can be used for de novo whole genome next-generation sequencing of any cultivable virus without the need for large-scale production of viral stocks or viral purification using centrifugal techniques.

Methods: A single viral plaque of a variant of the 2009 pandemic H1N1 human Influenza A virus was isolated and amplified using the optimized SISPA protocol. The sensitivity of the SISPA protocol presented here was tested with bacteriophage F_HA0480sp/Pa1651 DNA. The amplified products were sequenced with 454 and Illumina HiSeq platforms. Mapping and de novo assemblies were performed to analyze the quality of data produced from this optimized method.

Results: Analysis of the sequence data demonstrated that from a single viral plaque of Influenza A, a mapping assembly with 3590-fold average coverage representing 100% of the genome could be produced. The de novo assembled data produced contigs with 30-fold average sequence coverage, representing 96.5% of the genome. Using only 10 pg of starting DNA from bacteriophage F_HA0480sp/Pa1651 in the SISPA protocol resulted in sequencing data that gave a mapping assembly with 3488-fold average sequence coverage, representing 99.9% of the reference and a de novo assembly with 45-fold average sequence coverage, representing 98.1% of the genome.

Conclusions: The optimized SISPA protocol presented here produces amplified product that when sequenced will give high quality data that can be used for de novo assembly. The protocol requires only a single viral plaque or as little as 10 pg of DNA template, which will facilitate rapid identification of viruses during an outbreak and viruses that are difficult to propagate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693891PMC
http://dx.doi.org/10.1186/1743-422X-10-181DOI Listing

Publication Analysis

Top Keywords

sispa protocol
16
coverage representing
16
single viral
12
viral plaque
12
average sequence
12
sequence coverage
12
optimized sispa
8
protocol presented
8
bacteriophage f_ha0480sp/pa1651
8
quality data
8

Similar Publications

Whole-genome sequencing surveillance of Siberian tick-borne encephalitis virus (TBEV) identifies an additional lineage in Kyrgyzstan.

Virus Res

January 2025

UK Health Security Agency, Science Group, Porton Down, Salisbury, UK; Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK; Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections, Institute of Infection and Veterinary and Ecological Science, University of Liverpool, Liverpool, UK.

Tick-borne encephalitis virus (TBEV) is the most prevalent tick-borne viral disease in Europe and Asia. There are three main subtypes of the virus: European, Siberian, and Far Eastern, each of which having distinctive ecology, clinical presentation, and geographic distribution. In recent years, other TBEV subtypes have been described, namely the Himalayan and Baikalian subtypes.

View Article and Find Full Text PDF

Comparison of Experimental Methodologies Based on Bulk-Metagenome and Virus-like Particle Enrichment: Pros and Cons for Representativeness and Reproducibility in the Study of the Fecal Human Virome.

Microorganisms

January 2024

Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain.

Studies on the human virome based on the application of metagenomic approaches involve overcoming a series of challenges and limitations inherent not only to the biological features of viruses, but also to methodological pitfalls which different approaches have tried to minimize. These approaches fall into two main categories: bulk-metagenomes and virus-like particle (VLP) enrichment. In order to address issues associated with commonly used experimental procedures to assess the degree of reliability, representativeness, and reproducibility, we designed a comparative analysis applied to three experimental protocols, one based on bulk-metagenomes and two based on VLP enrichment.

View Article and Find Full Text PDF

White spot syndrome virus is a highly contagious pathogen affecting shrimp farming worldwide. The host range of this virus is primarily limited to crustaceans, such as shrimps, crabs, prawns, crayfish, and lobsters; however, several species of non-crustaceans, including aquatic insects, piscivorous birds, and molluscs may serve as the vectors for ecological dissemination. The present study was aimed at studying the faecal virome of domestic chickens () in Makhanda, Eastern Cape, South Africa.

View Article and Find Full Text PDF

Viruses are a major cause of acute gastroenteritis (AGE) in cats, chiefly in younger animals. Enteric specimens collected from 29 cats with acute enteritis and 33 non-diarrhoeic cats were screened in PCRs and reverse transcription (RT) PCR for a large panel of enteric viruses, including also orphan viruses of recent identification. At least one viral species, including feline panleukopenia virus (FPV), feline enteric coronavirus (FCoV), feline chaphamaparvovirus, calicivirus (vesivirus and novovirus), feline kobuvirus, feline sakobuvirus A and Lyon IARC polyomaviruses, was detected in 66.

View Article and Find Full Text PDF

Molecular identification and characterization of novel or re-emerging infectious pathogens is critical for disease surveillance and outbreak investigations. Next generation sequencing (NGS) using Sequence-Independent, Single-Primer Amplification (SISPA) is being used extensively in sequencing of viral genomes but it requires an expensive library preparation step. We developed a simple, low-cost method that enriches nucleic acids followed by a ligation-free (LF) 2-step Polymerase Chain Reaction (PCR) procedure for library preparation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!