Background: Segment 6 of the ISA virus codes for hemoagglutinin-esterase (HE). This segment is highly variable, with more than 26 variants identified. The major variation is observed in what is called the high polymorphism region (HPR). The role of the different HPR zones in the viral cycle or evolution remains unknown. However viruses that present the HPR0 are avirulent, while viruses with important deletions in this region have been responsible for outbreaks with high mortality rates. In this work, using bioinformatic tools, we examined the influence of different HPRs on the adaptation of HE genes to the host translational machinery and the relationship to observed virulence.
Methods: Translational efficiency of HE genes and their HPR were estimated analyzing codon-pair bias (CPB), adaptation to host codon use (codon adaptation index-CAI) and the adaptation to available tRNAs (tAI). These values were correlated with reported mortality for the respective ISA virus and the ΔG of RNA folding. tRNA abundance was inferred from tRNA gene numbers identified in the Salmo salar genome using tRNAScan-SE. Statistical correlation between data was performed using a non-parametric test.
Results: We found that HPR0 contains zones with codon pairs of low frequency and low availability of tRNA with respect to salmon codon-pair usage, suggesting that HPR modifies HE translational efficiency. Although calculating tAI was impossible because one third of tRNAs (~60.000) were tRNA-ala, translational efficiency measured by CPB shows that as HPR size increases, the CPB value of the HE gene decreases (P = 2x10⁻⁷, ρ = -0.675, n = 63) and that these values correlate positively with the mortality rates caused by the virus (ρ = 0.829, P = 2x10⁻⁷, n = 11). The mortality associated with different virus isolates or their corresponding HPR sizes were not related with the ΔG of HPR RNA folding, suggesting that the secondary structure of HPR RNA does not modify virulence.
Conclusions: Our results suggest that HPR size affects the efficiency of gene translation, which modulates the virulence of the virus by a mechanism similar to that observed in production of live attenuated vaccines through deoptimization of codon-pair usage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3684539 | PMC |
http://dx.doi.org/10.1186/1743-422X-10-180 | DOI Listing |
NPJ Vaccines
January 2025
Department of Gastroenterology & Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
Synthetic long peptides (SLPs) are a promising vaccine modality that exploit dendritic cells (DC) to treat chronic infections or cancer. Currently, the design of SLPs relies on in silico prediction and multifactorial T cells assays to determine which SLPs are best cross-presented on DC human leukocyte antigen class I (HLA-I). Furthermore, it is unknown how TLR ligand-based adjuvants affect DC cross-presentation.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea; Center for Biologics, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea. Electronic address:
The importance of in vitro diagnostics (IVDs) has significantly increased, driving the demand for rapid and sensitive diagnostic platforms. Molecular probes play a pivotal role in improving the sensitivity and accuracy of IVDs because of their target-specific signal transduction capabilities. Antibodies, which are commonly used as detection probes, face several challenges, including limited stability, high production costs, and low signal output.
View Article and Find Full Text PDFFish Shellfish Immunol
February 2025
Norwegian Veterinary Institute, Postboks 64, 1431, Ås, Norway. Electronic address:
Infectious Salmon Anaemia virus (ISAV) is an orthomyxovirus that causes large economic losses in Atlantic salmon (Salmo salar L.) aquaculture. All virulent ISAV variants originally emerged from a non-virulent subtype, ISAV-HPR0.
View Article and Find Full Text PDFVet Res Commun
November 2024
Department of Virology, Bursa Uludag University, Faculty of Veterinary Medicine, 16059, Bursa, Türkiye.
Bovine viral diarrhea virus (BVDV) is among the common bovine pathogens worldwide. One of the prominent protection measures of BVDV is vaccination. This study aimed to determine the growth characteristics, inactivation kinetics of vaccine candidates using local BVDV strains [TR-26 (BVDV-1f), TR-21 (BVDV-1l), and TR-15 (BVDV-2b)], and the serological response in experimental animals to inactivated BVDV vaccine formulations prepared with different adjuvants.
View Article and Find Full Text PDFRespir Med
January 2025
Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!