A series of solvent-free ionic liquid (IL)-based polymer electrolytes composed of amorphous and biodegradable poly(propylene carbonate) (PPC) host, LiClO4, and 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(+)BF4(-)) were prepared and characterized for the first time. FTIR studies reveal that the interaction between PPC chains and imidazolium cations weakens the complexation between PPC chains and Li(+) ions. Thermal analysis (DSC and TGA) results show that the incorporation of BMIM(+)BF4(-) into PPC/LiClO4 remarkably decreases the glass transition temperature and improves the thermal stability of the electrolytes. AC impedance results show that the ionic conductivities of the electrolytes are significantly increased with the increase of BMIM(+)BF4(-) amount, the ambient ionic conductivity of the electrolyte at a PPC/LiClO4/BMIM(+)BF4(-) weight ratio of 1/0.2/3 is 1.5 mS/cm, and the ionic transport behavior follows the Arrhenius equation. Both PPC/LiClO4/BMIM(+)BF4(-) and PPC/BMIM(+)BF4(-) electrolytes were applied in electrochromic devices with polyaniline as the electrochromic layer. The PPC/LiClO4/BMIM(+)BF4(-)-based device exhibits much better electrochromic performance in terms of optical contrast and switching time due to the presence of much smaller cations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp4021678DOI Listing

Publication Analysis

Top Keywords

polypropylene carbonate
8
ionic liquid
8
electrochromic devices
8
ppc chains
8
ionic
5
non-volatile polymer
4
polymer electrolyte
4
electrolyte based
4
based polypropylene
4
carbonate ionic
4

Similar Publications

It is necessary to overcome the relatively low conductivity of ionic liquids (ILs) caused by steric hindrance effects to improve their ability to passivate defects and inhibit ion migration to boost the photovoltaic performance of perovskite solar cells (PSCs). Herein, we designed and prepared a kind of low-concentration 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF) diluted with propylene carbonate (PC) via an ultrasonic technique (PC/IL). The decrease in the decomposition temperature related to the IL part and the increase in the sublimation temperature related to the PC part facilitated the use of PC/IL to effectively delay the crystallization process and passivate the defects in multiple ways to obtain high-quality perovskite films.

View Article and Find Full Text PDF

Ecotoxicity of Biodegradable Microplastics and Bio-based Microplastics: A Review of in vitro and in vivo Studies.

Environ Manage

December 2024

College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.

As biodegradable and bio-based plastics increasingly replace conventional plastics, the need for a comprehensive understanding of their ecotoxicity becomes more pressing. This review systematically presents the ecotoxicity of the microplastics (MPs) from different biodegradable plastics and bioplastics on various animals and plants. High doses of polylactic acid (PLA) MPs (10%) have been found to reduce plant nitrogen content and biomass, and affect the accumulation of heavy metals in plants.

View Article and Find Full Text PDF

An interactive organic-inorganic composite interface enables fast ion-transport, low self-discharge and stable storage of lithium battery.

J Colloid Interface Sci

March 2025

The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China. Electronic address:

Lithium batteries have been widely used in various fields, however, further research needs to be conducted to improve their stability and long-term storage performance for the highly active lithium metal anode. Herein, an organic-inorganic composite film composed of polypropylene carbonate (PPC), lithium bis(trifluoromethanesulphonyl)imide (LiTFSI) and LiLaZrNbO (LLZNO) is fabricated on the lithium foil surface by spin-coating technique to passivate the lithium anode and regulate the ion transport behavior. The Li/CF battery with the optimized composite film coated lithium anode exhibits excellent discharge capacity (1006.

View Article and Find Full Text PDF

Tailoring graphitized cellulose nanocrystal morphologies for robust barrier and mechanical enhancement of PPC composites for green active packaging.

Int J Biol Macromol

January 2025

Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada. Electronic address:

Both nanocellulose and graphene nanosheets serve as exceptional fillers for biopolymers. However, there are limited materials that effectively combine the properties of these two fillers in Poly (propylene carbonate) (PPC) to enhance their overall properties. This study presents a meticulous approach to producing graphitized nanocellulose (GCNC) with tailored rod-like (R-GCNC) and spheres-like (S-GCNC) under low-temperature and ambient-pressure conditions.

View Article and Find Full Text PDF

This work represents a new composite film with a nacre-mimetic structure through the alignment of hybrids comprising cellulose nanocrystals and ball-milled boron nitride (CNC-BNNS), within polypropylene carbonate (PPC) endowed with various properties. The impact of CNC-BNNS hybrids on mechanical strength mechanisms was evaluated under two-directional forces, marking the first such assessment. Using a solution casting approach, incorporating 5 % CNC-BNNS improved tensile strength by 67.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!