The relevance of the pathway through which the second proton is delivered to the active site of P450cam and the subsequent coupling/uncoupling reactions has been investigated using Car-Parrinello molecular dynamics/molecular mechanics (CPMD/MM) dynamics simulations. Five models have been prepared, representing delivery pathways in the wild-type enzyme and its mutants in which Thr252 mutated into other residues with different side-chain length and hydrophobicity. In the simulations, coupling reaction is observed in the wild-type enzyme (Model A) and its T252S mutant (Model B), while the uncoupling products are obtained in the other three models (C, D, and E). Different from previous studies, a dynamic process of the last stage of coupling/uncoupling was observed. We found that the peroxide bond cleavage in coupling, the Fe-O bond stretching in uncoupling, proton transfer, and electron delivery take place spontaneously. Moreover, besides the intrinsic chemical differences between the two peroxide oxygen atoms, water molecules in the active site and the proton transfer pathway may play an important role in the determination of coupling/uncoupling. We conclude that by maintaining a specific proton transfer channel, Asp251-Thr252 channel, the wild-type enzyme could efficiently deliver the second proton to the ideal position for coupling reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp312107r | DOI Listing |
Plant Physiol
January 2025
Anhui Key Laboratory for Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, P.R. China.
Kiwifruit bacterial canker, a highly destructive disease caused by Pseudomonas syringae pv. actinidiae (Psa), seriously affects kiwifruit (Actinidia spp.) production.
View Article and Find Full Text PDFAlcohol Clin Exp Res (Hoboken)
January 2025
Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA.
Background: Our previous study demonstrated that alcohol induced the expression of the α4 subunit of nicotinic acetylcholine receptors (nAChRs) in the livers of wild type mice (WT), and that whole-body α4 nAChR knockout mice (α4KO) showed protection against alcohol-induced steatosis, inflammation, and injury. Based on these findings, we hypothesized that hepatocyte-specific α4 nAChRs may directly contribute to the detrimental effects of alcohol on the liver.
Methods: Hepatocyte-specific α4 knockout mice (α4HepKO) were generated, and the absence of α4 nAChR was confirmed through PCR of genomic DNA.
Metab Brain Dis
January 2025
Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, Room 10006, 60 Fenwood Road, Boston, MA, 02115, USA.
α-Synuclein (αS) is a 140 amino-acid neuronal protein highly enriched in presynaptic nerve terminals. Its progressive accumulation in Lewy bodies and neurites is the hallmark of Parkinson's disease (PD). A growing number of studies highlights a critical interplay between lipid metabolism and αS biology.
View Article and Find Full Text PDFJ Cell Biol
April 2025
University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA.
Arginylation is the posttranslational addition of arginine to a protein by arginyltransferase-1 (ATE1). Previous studies have found that ATE1 targets multiple cytoskeletal proteins, and Ate1 deletion causes cytoskeletal defects, including reduced cell motility and adhesion. Some of these defects have been linked to actin arginylation, but the role of other arginylated cytoskeletal proteins has not been studied.
View Article and Find Full Text PDFMar Drugs
January 2025
Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
SDU050, a fungus derived from deep-sea sediment, is a prolific producer of diverse secondary metabolites. Genome sequencing revealed the presence of at least 69 biosynthetic gene clusters (BGCs), including 30 encoding type I polyketide synthases (PKSs). This study reports the isolation and identification of four classes of secondary metabolites from wild-type SDU050, alongside five additional metabolite classes, including three novel cytochalasins (-), obtained from a mutant strain through the metabolic blockade strategy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!