Ultrasound assessment of polymer-shelled magnetic microbubbles used as dual contrast agents.

J Acoust Soc Am

Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture, University of Genoa, Via Opera Pia 11, 16145 Genoa, Italy.

Published: June 2013

This letter describes an ultrasound imaging assessment of novel contrast agents that are detectable by both medical ultrasound and magnetic resonance imaging. Such agents are created by including superparamagnetic particles in polymer-shelled microbubbles through two different approaches. The reduced echogenicity and nonlinearity of the microbubbles are observed, depending on the strategy used to include the particles and the resulting density. The best results are obtained using imaging techniques that exploit the third-order nonlinear term, which is especially true when the microbubbles are excited by means of chirp pulses.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.4804942DOI Listing

Publication Analysis

Top Keywords

contrast agents
8
ultrasound assessment
4
assessment polymer-shelled
4
polymer-shelled magnetic
4
microbubbles
4
magnetic microbubbles
4
microbubbles dual
4
dual contrast
4
agents letter
4
letter describes
4

Similar Publications

Gold nanoparticles (AuNPs) and their biocompatible conjugates find wide use as transducers in (bio)sensors and as Nano-pharmaceutics. The study of the interaction between AuNPs and proteins in representative application media helps to better understand their intrinsic behaviors. A multi-environment, multi-parameter screening strategy is proposed based on asymmetric flow field flow fractionation (AF4)-multidetector.

View Article and Find Full Text PDF

The general control non-repressible 5 (GCN5)-related N-acetyltransferase (GNAT) SbzI, in the biosynthesis of the sulfonamide antibiotic altemicidin, catalyzes the transfer of the 2-sulfamoylacetyl (2-SA) moiety onto 6-azatetrahydroindane dinucleotide. While most GNAT superfamily utilize acyl-coenzyme A (acyl-CoA) as substrates, SbzI recognizes a carrier-protein (CP)-tethered 2-SA substrate. Moreover, SbzI is the only naturally occurring enzyme that catalyzes the direct incorporation of sulfonamide, a valuable pharmacophore in medicinal chemistry.

View Article and Find Full Text PDF

Objective: To characterize the public conversations around long COVID, as expressed through X (formerly Twitter) posts from May 2020 to April 2023.

Methods: Using X as the data source, we extracted tweets containing #long-covid, #long_covid, or "long covid," posted from May 2020 to April 2023. We then conducted an unsupervised deep learning analysis using Bidirectional Encoder Representations from Transformers (BERT).

View Article and Find Full Text PDF

Background: Many protective proteins, including lactoferrin and heavy chain antibodies, are present in camel colostrum, giving it a distinctive composition. Beyond a broad spectrum of pathogens, these proteins demonstrate antibacterial properties.

Aim: The current research assessed the prophylactic properties of camel colostrum against F17.

View Article and Find Full Text PDF

Functional screening identifies miRNAs with a novel function inhibiting Vascular Smooth Muscle Cell proliferation.

Mol Ther

December 2024

Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh; Edinburgh EH16 4TJ, UK; CARIM school for cardiovascular sciences, Department of Pathology, Maastricht University Medical Center (MUMC); Maastricht 6229HX, The Netherlands. Electronic address:

Proliferation of vascular smooth muscle cells (vSMCs) is a crucial contributor to pathological vascular remodelling. MicroRNAs (miRNAs) are powerful gene regulators and attractive therapeutic agents. Here, we aim to systematically identify and characterise miRNAs with therapeutic potential in targeting vSMC proliferation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!