The low stability of recombinant human interferon-γ (rhIFN-γ) therapeutic protein imposes some restrictions in its medical applications. In the current study, the effect of oxygen tension on the stability of purified rhIFN-γ was investigated. The rhIFN-γ was purified (>99%) by a two-step chromatographic process. Storage vials were filled by purified formulated product under normal atmospheric oxygen and low oxygen tension conditions. At different time intervals, the amounts of rhIFN-γ covalent dimers and deamidated forms were analyzed using analytical high-performance liquid chromatography (HPLC; size exclusion and cation exchange) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) methods. To determine the biological activity of purified rhIFN-γ, an antiviral activity assay against vesicular stomatitis virus (VSV) was performed. Upon rhIFN-γ long-term storage in a low oxygen tension condition, the amounts of rhIFN-γ covalent dimers and deamidated forms and also the biological activity of rhIFN-γ changed a little. In contrast, by 9 months of storage of rhIFN-γ preparations under normal atmospheric condition, the amount of covalent dimers and deamidated forms increased with time and reached to approximately 3.5% and 11.5% of the initial amount, respectively. The antiviral specific activity of 9-month-old rhIFN-γ preparations decreased to 41% of the initial amount at normal storage condition, while no significant reduction was seen at the low oxygen tension condition. In conclusion, oxygen tension during storage could have a significant impact on rhIFN-γ stability and finally on the quality of pharmaceutical rhIFN-γ product.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10826068.2012.762716DOI Listing

Publication Analysis

Top Keywords

oxygen tension
24
low oxygen
16
tension condition
12
rhifn-γ
12
covalent dimers
12
dimers deamidated
12
deamidated forms
12
stability recombinant
8
recombinant human
8
human interferon-γ
8

Similar Publications

Background: Cerebral autoregulation is a robust regulatory mechanism that stabilizes cerebral blood flow in response to reduced blood pressure, thereby preventing cerebral ischaemia. Scientists have long believed that cerebral autoregulation also stabilizes cerebral blood flow against increases in intracranial pressure, which is another component that determines cerebral perfusion pressure. However, this idea was inconsistent with the complex pathogenesis of normal pressure hydrocephalus, which includes components of chronic cerebral ischaemia due to mild increases in intracranial pressure.

View Article and Find Full Text PDF

Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.

View Article and Find Full Text PDF

Phytochlorin-Based Sonosensitizers Combined with Free-Field Ultrasound for Immune-Sonodynamic Cancer Therapy.

Adv Mater

January 2025

State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.

Phytochlorins, a class of plant-derived tetrapyrroles, show great potential as sonosensitizers in sonodynamic therapy (SDT). The development of new phytochlorin-based sonosensitizers has significantly improved SDT, yet the absence of specialized sonodynamic systems limits their clinical translation. Herein, a dedicated ultrasound system along with a detailed step-by-step sonodynamic process from in vitro to in vivo is developed to activate phytochlorin-based sonosensitizers.

View Article and Find Full Text PDF

Oxygen transport across the lifespan of male Sprague Dawley rats.

Biogerontology

January 2025

Song Biotechnologies LLC., Baltimore, MD, 21030, USA.

Human populations are experiencing unprecedented growth and longevity with lingering knowledge gaps of the characteristics, mechanisms, and pathologies of senescence. Invasive measurements and long-term control conditions for longitudinal studies are infeasible, necessitating the need for surrogate animal models. Rats have short lifespans (2-3 years) with translatable cardiovascular systems, and Sprague Dawley microcirculatory preparations are key to studying the oxygen transport mechanisms critical to the loss of skeletal muscle function in aging.

View Article and Find Full Text PDF

In patients with acute brain injury (ABI), optimizing cerebral perfusion parameters relies on multimodal monitoring. This include data from systemic monitoring-mean arterial pressure (MAP), arterial carbon dioxide tension (PaCO), arterial oxygen saturation (SaO), hemoglobin levels (Hb), and temperature-as well as neurological monitoring-intracranial pressure (ICP), cerebral perfusion pressure (CPP), and transcranial Doppler (TCD) velocities. We hypothesized that these parameters alone were not sufficient to assess the risk of cerebral ischemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!