This investigation explores the possibility of utilizing granular slag as an alternative to fine aggregate (natural sand) in construction applications like masonry and plastering. Construction industry utilizes large volume of fine aggregate in all the applications which has resulted into shortage of good quality naturally available fine aggregate. Use of granular slag serves two fold purposes, i.e. waste utilisation as well as alternative eco-friendly green building material for construction. The investigation highlights comparative study of properties with partial and full replacement of fine aggregate (natural sand) by granular slag in cement mortar applications (masonry and plastering). For this purpose, cement mortar mix proportions from 1:3, 1:4, 1:5 & 1:6 by volume were selected for 0, 25, 50, 75 & 100% replacement levels with w/c ratios of 0.60, 0.65, 0.70 & 0.72 respectively. Based on the study results, it could be inferred that replacement of natural sand with granular slag from 25 to 75% increased the packing density of mortar which resulted into reduced w/c ratio, increased strength properties of all mortar mixes. Hence, it could be recommended that the granular slag could be effectively utilized as fine aggregate in masonry and plastering applications in place of conventional cement mortar mixes using natural sand.
Download full-text PDF |
Source |
---|
Environ Sci Pollut Res Int
January 2025
Savannah River National Laboratory, Aiken, SC, USA.
Liquid low-level radioactive waste at the Savannah River Site contains several species of mercury, including inorganic, elemental, and methylmercury. This waste is solidified and stabilized in a cementitious waste form referred to as saltstone. Soluble mercury is stabilized as β-cinnabar, HgS as the result of reaction between the mercury and sulfur present in blast furnace slag, one of the cementitious reagents.
View Article and Find Full Text PDFMicroorganisms
November 2024
Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
Long-term coal mining in the Muli coal mine area of Qinghai Province has degraded soil quality and reduced microbial diversity, making it imperative to implement effective ecological restoration measures to restore soil quality and enhance ecosystem functions. This study evaluated soil samples under 11 ecological restoration treatments using metagenomic sequencing combined with soil quality analysis to explore the responses of the microbial community structure and function to identify effective restoration measures. This study demonstrated that ecological restoration significantly increased the soil microbial diversity and richness, with the MLII1 (soil samples treated with a chemical weathering agent, attapulgite, and a microbial agent) and MLIII1 (soil samples treated with sheep manure (2.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2024
Department of Civil Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India.
The scarcity of conventional aggregates with tremendous growth in highway construction and the indiscriminate dumping of industrial waste materials in precious landfills has become a huge global concern. This study is aimed at utilizing wastes from various industries, including coalmine overburden (OB) dump, basic oxygen furnace (BOF) slag, and fly ash to produce suitable and sustainable cement-treated subbase/base course layers (CBSB/CTB) for flexible pavement construction. Response surface methodology was used to optimize the composition of the blended material considering unconfined compressive strength (UCS) and Poisson's ratio.
View Article and Find Full Text PDFMaterials (Basel)
September 2024
Institute of Building Materials Science, Leibniz University Hannover, 30167 Hanover, Germany.
J Environ Manage
September 2024
GER - Green Engineering and Resources Research Group, Department of Chemistry and Process & Resources Engineering - ETSIIT, University of Cantabria, Santander, Spain. Electronic address:
Global circular economy drives the development of sustainable alkali activated materials (AAM) for use as construction material from industrial by-products and wastes. The assessment of the potentially hazardous substances release of these new material combinations into the soil and groundwater over time is essential. In this study, the aim is the environmental assessment of three AAMs based on blast furnace slag (BFS), activated with almond shell biomass ash (ABA) as potassium source and three solid sources of silica from the agricultural industry, rice husk ash (RHA), spent diatomaceous earth (SDE) and bamboo leaf ash (BLA), using European horizontal leaching tests proposed for construction materials, for monolithic form, Dynamic Surface Leaching Test (DSLT) and for granular form, Up-flow Percolation Test and the Compliance leaching test, by simulating different scenarios of their entire life cycle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!