The Eastern Himalayan region of Northeast (NE) India is home to a large number of indigenous rice varieties, which may serve as a valuable genetic resource for future crop improvement to meet the ever-increasing demand for food production. However, these varieties are rapidly being lost due to changes in land-use and agricultural practices, which favor agronomically improved varieties. A detailed understanding of the genetic structure and diversity of indigenous rice varieties is crucial for efficient utilization of rice genetic resources and for developing suitable conservation strategies. To explore the genetic structure and diversity of rice varieties in NE India, we genotyped 300 individuals of 24 indigenous rice varieties representing sali, boro, jum and glutinous types, 5 agronomically improved varieties, and one wild rice species (O. rufipogon) using seven SSR markers. A total of 85 alleles and a very high level of gene diversity (0.776) were detected among the indigenous rice varieties of the region. Considerable level of genetic variation was found within indigenous varieties whereas improved varieties were monoporphic across all loci. The comparison of genetic diversity among different types of rice revealed that sali type possessed the highest gene diversity (0.747) followed by jum (0.627), glutinous (0.602) and boro (0.596) types of indigenous rice varieties, while the lowest diversity was detected in agronomically improved varieties (0.459). The AMOVA results showed that 66% of the variation was distributed among varieties indicating a very high level of genetic differentiation in rice varieties in the region. Two major genetically defined clusters corresponding to indica and japonica groups were detected in rice varieties of the region. Overall, traditionally cultivated indigenous rice varieties in NE India showed high levels of genetic diversity comparable to levels of genetic diversity reported from wild rice populations in various parts of the world. The efforts for conservation of rice germplasm in NE India should consider saving rice varieties representing different types with specific emphasis given to sali and jum types. The protection against the loss of vast genetic diversity found in indigenous rice varieties in NE India is crucial for maintaining future food security in the changing world.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667383 | PMC |
http://dx.doi.org/10.1186/2193-1801-2-228 | DOI Listing |
Adv Biotechnol (Singap)
October 2023
Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agro-Biotechnology, Chinese University of Hong Kong, Hong Kong, 999077, China.
Water-saving irrigation techniques play a crucial role in addressing water scarcity challenges and promoting sustainable agriculture. However, the selection of appropriate water-saving irrigation methods remains a challenge in agricultural production. Additionally, the molecular regulatory mechanisms of crops under water-saving irrigation are not yet clear.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA.
Plasma is considered as the fourth state of matter, and atmospheric cold plasma (cold plasma) is a type of plasma consisting of ionized gases containing excited species of atoms, molecules, ions, and free radicals at near room temperature. Cold plasma is generated by applying high voltage to gases, causing it to ionize thus forming plasma. Although cold plasma has been found to break seed dormancy and improve germination rate, only a few studies have explored the potential of cold plasma against insect herbivory.
View Article and Find Full Text PDFNature
January 2025
Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
Soil alkalinization and global warming are predicted to pose major challenges to agriculture in the future, as they continue to accelerate, markedly reducing global arable land and crop yields. Therefore, strategies for future agriculture are needed to further improve globally cultivated, relatively high-yielding Green Revolution varieties (GRVs) derived from the SEMIDWARF 1 (SD1) gene. Here we propose that precise regulation of the phytohormone gibberellin (GA) to optimal levels is the key to not only confer alkali-thermal tolerance to GRVs, but also to further enhance their yield.
View Article and Find Full Text PDFFront Plant Sci
January 2025
National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.
Nitrogen deficiency is a key constraint on crop yield. Cassava, the world's sixth-largest food crop and a crucial source of feed and industrial materials, can thrive in marginal soils, yet its yield is still significantly affected by limited nitrogen availability. Investigating cassava's response mechanisms to nitrogen scarcity is therefore essential for advancing molecular breeding and identifying nitrogen-efficient varieties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
Microbubble-assisted starch modification (MASM) using different gases (N, CO and air) was employed to assess the effects of hydrodynamic cavitation (HC) on various botanical starches, including potato, wheat, corn and rice. SEM showed that N- and CO- microbubbles created more pronounced holes and cracks on the starch surfaces than air-microbubbles. The hydrodynamic cavitation-assisted microbubble (HCAM) treatment significantly reduced the amorphous and crystalline structures in potato and wheat starches, with less impact observed in corn and rice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!