The synthesis, characterization, self-assembly, and gel formation of poly(γ-benzyl-l-glutamate) (PBLG) in a molecular weight range from ca. 7,000-100,000 g/mol and with narrow molecular weight distribution are described. The PBLG is synthesized by the nickel-mediated ring-opening polymerization and is characterized by size-exclusion chromatography coupled with multiple-angle laser light scattering, NMR, and Fourier transform infrared spectroscopy. The self-assembly and thermoreversible gel formation in the helicogenic solvent toluene is investigated by transmission electron microscopy, atomic force microscopy, small-angle X-ray scattering, and synchrotron powder X-ray diffraction. At concentrations significantly below the minimum gelation concentration, spherical aggregates are observed. At higher concentrations, gels are formed, which show a 3D network structure composed of nanofibers. The proposed self-assembly mechanism is based on a distorted hexagonal packing of PBLG helices parallel to the axis of the nanofiber. The gel network forms due to branching and rejoining of bundles of PBLG nanofibers. The network exhibits uniform domains with a length of 200 ± 42 nm composed of densely packed PBLG helices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3669512 | PMC |
http://dx.doi.org/10.1007/s00396-012-2866-9 | DOI Listing |
Macromol Rapid Commun
November 2024
Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 16, 64287, Darmstadt, Germany.
Many polypeptides form stable, helical secondary structures enabling the formation of lyotropic liquid crystalline (LLC) phases. Contrary to the well-studied polyglutamate, their counterparts based on polyaspartates exhibit a much lower helix inversion barrier. Therefore, the helix sense is not solely dictated by the chirality of the amino acid used, but additionally by the nature and conformation of the polymer sidechain.
View Article and Find Full Text PDFRSC Adv
January 2020
Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 Halle (Saale) D-06120 Germany
Hybrid polymers of peptides resembling (partially) folded protein structures are promising materials in biomedicine, especially in view of folding-interactions between different segments. In this study polymers bearing repetitive peptidic folding elements, composed of N-terminus functionalized bis-ω-ene-functional oligo-l-lysine(carboxybenzyl(Z))s (Lys ) with repeating units () of 3, 6, 12, 24 and 30 were successfully synthesized to study their secondary structure introduced by conformational interactions between their chains. The pre-polymers of ADMET, narrowly dispersed Lys s, were obtained by ring opening polymerization (ROP) of -carboxyanhydride (NCA) initiated with 11-amino-undecene, following N-terminus functionalization with 10-undecenoyl chloride.
View Article and Find Full Text PDFHaving control over the supramolecular chirality through multiexternal stimulators provides many possibilities in realizing functional chiral materials. Herein, the supramolecular chirality of nanotwists comprising PA centered with 1,4-phenyldicarboxamide bearing two l/d-helicogenic alanine motifs and achiral COOH at each terminus of the alanine arms is modulated by solvent, temperature, and ultrasound. The modulations are mainly due to the hydrogen bonds among gelators and solvent-gelator interactions, resulting in changes of the molecular arrangement and subsequent self-assembled nanostructures.
View Article and Find Full Text PDFBiomacromolecules
August 2017
Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
Using synthetic polypeptides as a model system, the theories of helix-coil transition were developed into one of the most beautiful and fruitful subjects in macromolecular science. The classic models proposed by Schellman and Zimm-Bragg more than 50 years ago, differ in the assumption on whether the configuration of multiple helical sequences separated by random coil sections is allowed in a longer polypeptide chain. Zimm also calculated the critical chain lengths that facilitate such interrupted helices in different solvent conditions.
View Article and Find Full Text PDFBiomacromolecules
July 2016
University of Potsdam , Institute of Chemistry, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany.
Owing to its rod-like α-helical secondary structure, the synthetic polypeptide poly(γ-benzyl-l-glutamate) (PBlG) can form physical and thermoreversible gels in helicogenic solvents such as toluene. The versatility of PBlG can be increased by introducing functionalizable comonomers, such as allylglycine (AG). In this work we examined the secondary structure of PBlG and a series of statistical poly(γ-benzyl-l-glutamate-co-allylglycine) copolypeptides, varying in composition and chain length, by circular dichroism (CD), Fourier-transform infrared (FTIR) and Raman spectroscopy, and wide-angle X-ray scattering (WAXS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!