Proteomic analysis of normal murine brain parts.

Cancer Genomics Proteomics

Division of Biotechnology, Centre of Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.

Published: December 2013

Murine brain is an excellent tool for studying protein expression and brain function in mammals. Although mice are an extensively used model to recapitulate various pathological conditions, the proteome of the normal mouse brain has not been yet reported. In the present study, we identified the total proteins of different parts of the brain of CB7BL/6 mice, a widely used strain, by applying proteomic methodologies. The adult mouse brain was dissected anatomically into the following regions: frontal cortex, olfactory bulb, hippocampus, midbrain, cerebellum, hypothalamus and medulla. Total protein extracts of these regions were separated by two-dimensional gel electrophoresis and analyzed by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry, following in-gel digestion with trypsin. Protein identification was carried out by peptide mass fingerprint. Thus, 515 different single-gene products were identified in total, 54 expressed specifically in the olfactory bulb, 62 in the hippocampus, 36 in the frontal cortex, five in the cerebellum, nine in the midbrain, eight in the hypothamamus and 10 in the medulla. The majority of the proteins were enzymes, structural proteins and transporters. Moreover, the distribution of these molecules appears to exhibit direct correlation with the function of the brain regions where they were expressed. This study leads to the complete characterization of the normal mouse brain proteome as well as the protein expression profile of the different brain regions. These results will aid in addressing unmet scientific needs regarding physiological and pathological brain functions.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mouse brain
12
brain
10
murine brain
8
protein expression
8
normal mouse
8
identified total
8
frontal cortex
8
olfactory bulb
8
bulb hippocampus
8
brain regions
8

Similar Publications

Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc.

View Article and Find Full Text PDF

Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

VCP controls KCC2 degradation through FAF1 recruitment and accelerates emergence from anesthesia.

Proc Natl Acad Sci U S A

January 2025

Department of Medical Neuroscience, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.

Ubiquitin-proteasomal degradation of K/Cl cotransporter 2 (KCC2) in the ventral posteromedial nucleus (VPM) has been demonstrated to serve as a common mechanism by which the brain emerges from anesthesia and regains consciousness. Ubiquitin-proteasomal degradation of KCC2 during anesthesia is driven by E3 ligase Fbxl4. However, the mechanism by which ubiquitinated KCC2 is targeted to the proteasome has not been elucidated.

View Article and Find Full Text PDF

Cpeb1 remodels cell type-specific translational program to promote fear extinction.

Sci Adv

January 2025

Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.

Protein translation is crucial for fear extinction, a process vital for adaptive behavior and mental health, yet the underlying cell-specific mechanisms remain elusive. Using a Tet-On 3G genetic approach, we achieved precise temporal control over protein translation in the infralimbic medial prefrontal cortex () during fear extinction. In addition, our results reveal that the disruption of cytoplasmic polyadenylation element binding protein 1 (Cpeb1) leads to notable alterations in cell type-specific translational programs, thereby affecting fear extinction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!