A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vivo loading model to examine bone adaptation in humans: a pilot study. | LitMetric

AI Article Synopsis

  • Bone adapts well to habitual loading, but human responses to mechanical loading have not been thoroughly studied.
  • A study involved women applying forces to their radius by leaning on their hand, with cadaver experiments showing significant compressive strains.
  • The in vivo loading resulted in increased bone volume and protection against bone loss in experimental subjects, suggesting this loading model could be useful clinically for strengthening women's radius bones.

Article Abstract

Bone is typically well suited for its habitual loading environment because of its ability to adapt. Although characteristics of the mechanical loading environment predict the bone adaptive response in animals, this has not been prospectively validated in humans. Here, we describe an in vivo loading model in which women apply forces to the radius by leaning onto their hand. We characterized the strain environment imposed on the radius using cadaveric experimentation and conducted a prospective study in which 19 adult women loaded their distal radii 50 cycles/day, 3 days/week, for 28 weeks and seven additional adult women served as controls. In four cadaveric specimens, loading caused compressive principal strains of -1,695 ± 396 με with radial bending dorsally and towards the ulna. Prospective in vivo loading produced measurable improvements to bone and appeared to protect against bone loss associated with seasonal fluctuations in physical activity and sun exposure. Experimental subjects had significant gains to bone volume (BV) and moments of inertia, while, control subjects had significant losses in BMC and moments of inertia. The loading model is thus suitable as a model system for exploring bone adaptation in humans, and may eventually be clinically useful for strengthening the radius of women.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.22388DOI Listing

Publication Analysis

Top Keywords

vivo loading
12
loading model
12
bone adaptation
8
adaptation humans
8
loading environment
8
adult women
8
moments inertia
8
bone
7
loading
6
model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!